The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via partial derivative-dressing method

被引:41
作者
Dubrovsky, VG
Lisitsyn, YV
机构
[1] Univ Lecce, I-73100 Lecce, Italy
[2] Novosibirsk State Univ, Novosibirsk 630092, Russia
[3] Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia
关键词
D O I
10.1016/S0375-9601(02)00154-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The (2 + 1)-dimensional integrable generalization of Kaup-Kuperschmidt and Savada-Kotera equations are studied by (&PARTIAL;) over bar -dressing method of Zakharov and Manakov. Several classes of exact solutions such as line solitons and line rational lumps are constructed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:198 / 207
页数:10
相关论文
共 15 条
[1]  
Ablowitz M. J., 1991, LONDON MATH SOC LECT
[2]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[3]   THE D-BAR APPROACH TO INVERSE SCATTERING AND NONLINEAR EVOLUTIONS [J].
BEALS, R ;
COIFMAN, RR .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 18 (1-3) :242-249
[4]   THE NON-LOCAL PARTIAL-DIFFERENTIAL-EQUATION PROBLEM AND (2+1)-DIMENSIONAL SOLITON-EQUATIONS [J].
BOGDANOV, LV ;
MANAKOV, SV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10) :L537-L544
[5]  
FOKAS AS, 1983, LECT NOTES PHYS, V189, P137
[6]   Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation [J].
Hu, XB ;
Wang, DL ;
Qian, XM .
PHYSICS LETTERS A, 1999, 262 (06) :409-415
[7]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[8]  
Konopelchenko B.G., 1993, Solitons in Multidimensions, DOI DOI 10.1142/1982
[9]   SOME NEW INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS IN 2 + 1 DIMENSIONS [J].
KONOPELCHENKO, BG ;
DUBROVSKY, VG .
PHYSICS LETTERS A, 1984, 102 (1-2) :15-17
[10]  
Konopelchenko BG., 1992, INTRO MULTIDIMENSION