Well-posedness of initial value problems for singular parabolic equations

被引:17
作者
Kersner, R
Tesei, A
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
[2] Hungarian Acad Sci, Inst Comp & Automat, H-1518 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
D O I
10.1016/j.jde.2003.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study well-posedness of initial value problems for a class of singular quasilinear parabolic equations in one space dimension. Simple conditions for well-posedness in the space of bounded nonnegative solutions are given, which involve boundedness of solutions of some related linear stationary problems. By a suitable change of unknown, the above results can be applied to classical initial-boundary value problems for parabolic equations with singular coefficients, as the heat equation with inverse square potential. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 76
页数:30
相关论文
共 30 条
[1]  
AMANN H, 2002, LINEAR PARABOLIC EQU
[2]  
[Anonymous], CAMBRIDGE STUDIES AD
[3]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[4]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[5]   A remark on the uniqueness of solution for the Serrin operator [J].
Benilan, P ;
Bouhsiss, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :611-616
[6]   POSITIVITY VERSUS LOCALIZATION IN DEGENERATE DIFFUSION-EQUATIONS [J].
BERTSCH, M ;
KERSNER, R ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (09) :987-1008
[7]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[8]  
CAMPITI M, SPRINGER TRADUATE TE, V194, P383
[9]   THE CAUCHY-PROBLEM FOR THE NONLINEAR FILTRATION EQUATION IN AN INHOMOGENEOUS-MEDIUM [J].
EIDUS, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :309-318
[10]   THE FILTRATION EQUATION IN A CLASS OF FUNCTIONS DECREASING AT INFINITY [J].
EIDUS, D ;
KAMIN, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :825-830