The maximum number of paths of length three in a planar graph

被引:9
作者
Grzesik, Andrzej [1 ]
Gyori, Ervin [2 ,3 ]
Paulos, Addisu [3 ,4 ]
Salia, Nika [2 ,3 ]
Tompkins, Casey [5 ,6 ]
Zamora, Oscar [3 ,7 ]
机构
[1] Jagiellonian Univ, Krakow, Poland
[2] Alfred Renyi Inst Math, Budapest, Hungary
[3] Cent European Univ, Budapest, Hungary
[4] Addis Ababa Univ, Addis Ababa, Ethiopia
[5] Inst Basic Sci IBS, Discrete Math Grp, Daejeon, South Korea
[6] Karlsruhe Inst Technol, Karlsruhe, Germany
[7] Univ Costa Rica, Ctr Invest Matemat Pura & Aplicada CIMPA, Escuela Matemat, San Jose, Costa Rica
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
extremal graphs; planar graphs; turan number; CLIQUES; PENTAGONS; CYCLES;
D O I
10.1002/jgt.22836
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f ( n , H ) $f(n,H)$ denote the maximum number of copies of H $H$ possible in an n $n$-vertex planar graph. The function f ( n , H ) $f(n,H)$ has been determined when H $H$ is a cycle of length 3 or 4 by Hakimi and Schmeichel and when H $H$ is a complete bipartite graph with smaller part of size 1 or 2 by Alon and Caro. We determine f ( n , H ) $f(n,H)$ exactly in the case when H $H$ is a path of length 3.
引用
收藏
页码:493 / 510
页数:18
相关论文
共 26 条
[1]   ON THE NUMBER OF CYCLES OF LENGTH-4 IN A MAXIMAL PLANAR GRAPH [J].
ALAMEDDINE, AF .
JOURNAL OF GRAPH THEORY, 1980, 4 (04) :417-422
[2]   Additive Approximation of Generalized Turan Questions [J].
Alon, Noga ;
Shikhelman, Clara .
ALGORITHMICA, 2022, 84 (02) :464-481
[3]   Many T copies in H-free graphs [J].
Alon, Noga ;
Shikhelman, Clara .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 :146-172
[4]  
Alon Noga, 1984, North-Holland Mathematics Studies, V87, P25
[5]   Pentagons vs. triangles [J].
Bollobas, Bela ;
Gyori, Ervin .
DISCRETE MATHEMATICS, 2008, 308 (19) :4332-4336
[6]  
Cox C., 2021, ARXIV PREPRINT ARXIV
[7]   CONNECTIVITY, GRAPH MINORS, AND SUBGRAPH MULTIPLICITY [J].
EPPSTEIN, D .
JOURNAL OF GRAPH THEORY, 1993, 17 (03) :409-416
[8]  
Erdos P, 1962, Magyar Tud. Akad. Mat. Kutato Int. Kozl., V7, P459
[9]   A note on the maximum number of triangles in a C5-free graph [J].
Ergemlidze, Beka ;
Methuku, Abhishek ;
Salia, Nika ;
Gyori, Ervin .
JOURNAL OF GRAPH THEORY, 2019, 90 (03) :227-230
[10]   On the number of cliques in graphs with a forbidden minor [J].
Fox, Jacob ;
Wei, Fan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 126 :175-197