Quantum many-body scars with chiral topological order in two dimensions and critical properties in one dimension

被引:18
作者
Srivatsa, N. S. [1 ]
Wildeboer, Julia [2 ]
Seidel, Alexander [3 ]
Nielsen, Anne E. B. [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[3] Washington Univ, Dept Phys, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
Quantum entanglement;
D O I
10.1103/PhysRevB.102.235106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We construct few-body, interacting, nonlocal Hamiltonians with a quantum scar state in an otherwise thermalizing many-body spectrum. In one dimension, the embedded state is a critical state, and in two dimensions, the embedded state is a chiral topologically ordered state. The models are defined on slightly disordered lattices, and the scar state appears to be independent of the precise realization of the disorder. A parameter allows the scar state to be placed at any position in the spectrum. We show that the level spacing distributions are Wigner-Dyson and that the entanglement entropies of the states in the middle of the spectrum are close to the Page value. Finally, we confirm the topological order in the scar state by showing that one can insert anyons into the state.
引用
收藏
页数:6
相关论文
共 38 条
  • [1] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [2] Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states
    Basko, DM
    Aleiner, IL
    Altshuler, BL
    [J]. ANNALS OF PHYSICS, 2006, 321 (05) : 1126 - 1205
  • [3] Probing many-body dynamics on a 51-atom quantum simulator
    Bernien, Hannes
    Schwartz, Sylvain
    Keesling, Alexander
    Levine, Harry
    Omran, Ahmed
    Pichler, Hannes
    Choi, Soonwon
    Zibrov, Alexander S.
    Endres, Manuel
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    [J]. NATURE, 2017, 551 (7682) : 579 - +
  • [4] Systematic Construction of Scarred Many-Body Dynamics in 1D Lattice Models
    Bull, Kieran
    Martin, Ivar
    Papic, Z.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (03)
  • [5] Entanglement entropy and quantum field theory
    Calabrese, P
    Cardy, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [6] Infinite matrix product states, conformal field theory, and the Haldane-Shastry model
    Cirac, J. Ignacio
    Sierra, German
    [J]. PHYSICAL REVIEW B, 2010, 81 (10):
  • [7] From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics
    D'Alessio, Luca
    Kafri, Yariv
    Polkovnikov, Anatoli
    Rigol, Marcos
    [J]. ADVANCES IN PHYSICS, 2016, 65 (03) : 239 - 362
  • [8] QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM
    DEUTSCH, JM
    [J]. PHYSICAL REVIEW A, 1991, 43 (04): : 2046 - 2049
  • [9] Lattice effects on Laughlin wave functions and parent Hamiltonians
    Glasser, Ivan
    Ignacio Cirac, J.
    Sierra, German
    Nielsen, Anne E. B.
    [J]. PHYSICAL REVIEW B, 2016, 94 (24)
  • [10] Exact parent Hamiltonians of bosonic and fermionic Moore-Read states on lattices and local models
    Glasser, Ivan
    Cirac, J. Ignacio
    Sierra, German
    Nielsen, Anne E. B.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17