Rainbow vertex-pancyclicity of strongly edge-colored graphs

被引:4
作者
Wang, Maoqun [1 ]
Qian, Jianguo [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Strongly edge-colored graph; Rainbow vertex-pancyclicity; CYCLES;
D O I
10.1016/j.disc.2020.112164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A strongly edge-colored graph is an edge-colored graph in which every path of length 3 is rainbow or, equivalently, every monochromatic subgraph is an induced matching. In this paper, we show that every strongly edge-colored graph with n vertices and minimum degree delta >= 2n/3 is rainbow vertex-pancyclic. This extends a recent result given by Cheng et al., that is, every strongly edge-colored graph with n vertices and minimum degree delta >= 2n/3 is rainbow Hamiltonian. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
Akbari S, 2007, AUSTRALAS J COMB, V37, P33
[2]   Random subgraphs of properly edge-coloured complete graphs and long rainbow cycles [J].
Alon, Noga ;
Pokrovskiy, Alexey ;
Sudakov, Benny .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 222 (01) :317-331
[3]   Rainbow matchings in strongly edge-colored graphs [J].
Babu, Jasine ;
Chandran, L. Sunil ;
Vaidyanathan, Krishna .
DISCRETE MATHEMATICS, 2015, 338 (07) :1191-1196
[4]  
Bondy J A., 1971, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, P167
[5]  
CANO P, 2017, ELECT NOTES DISCRETE, V61, P199, DOI DOI 10.1016/J.ENDM.2017.06.039
[6]  
Chen H., 2015, ARXIV150304516
[7]   Rainbow Hamiltonian cycles in strongly edge-colored graphs [J].
Cheng, Yangyang ;
Sun, Qiang ;
Tan, Ta Sheng ;
Wang, Guanghui .
DISCRETE MATHEMATICS, 2019, 342 (04) :1186-1190
[8]  
Dirac G., 1952, Proc. Lond. Math. Soc., V2, P69, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
[9]  
Gyarfás A, 2011, AUSTRALAS J COMB, V50, P45
[10]  
Hahn G., 1980, Actes du Colloque de Cerisy, V12, P18