Quasi-Periodic Array Modeling Using Reduced Basis Method

被引:16
作者
Dang, Xunwang [1 ]
Li, Maokun [1 ]
Yang, Fan [1 ]
Xu, Shenheng [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2017年 / 16卷
基金
美国国家科学基金会;
关键词
Empirical interpolation method (EIM); integral equation; quasi-periodic structure; reduced basis method (RBM); PARTIAL-DIFFERENTIAL-EQUATIONS; RADIATION;
D O I
10.1109/LAWP.2016.2605760
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many electromagnetic devices such as reflectarray antennas, metasurfaces, etc., can be modeled as quasi-periodic arrays. In these devices, similar array elements with a few varying geometrical parameters are positioned in a periodic lattice. Compared to modeling of periodic arrays, efficient modeling of quasi-periodic arrays can be very challenging due to the loss of periodicity in the array. In this work, we applied the reduced basis method to integral equation solvers for quasi-periodic array modeling. In this scheme, a new basis set based on the varying parameters is constructed through an offline process. Because of the similarities among elements, the number of basis functions for each element can be much less than direct modeling from geometrical mesh. Numerical examples show that both the computational and memory efficiency are improved compared to direct modeling using method of moments.
引用
收藏
页码:825 / 828
页数:4
相关论文
共 12 条
[1]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[2]   PRECONDITIONING TECHNIQUES FOR REDUCED BASIS METHODS FOR PARAMETERIZED ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Elman, Howard C. ;
Forstall, Virginia .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) :S177-S194
[3]   The reduced basis method for the electric field integral equation [J].
Fares, M. ;
Hesthaven, J. S. ;
Maday, Y. ;
Stamm, B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (14) :5532-5555
[4]   A reduced basis method for electromagnetic scattering by multiple particles in three dimensions [J].
Ganesh, M. ;
Hesthaven, J. S. ;
Stamm, B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (23) :7756-7779
[5]   Gaussian Ring Basis Functions for the Analysis of Modulated Metasurface Antennas [J].
Gonzalez-Ovejero, David ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (09) :3982-3993
[6]   Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method [J].
Hess, Martin W. ;
Benner, Peter .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (06) :2265-2274
[7]   Analytically Expressed Dispersion Diagram of Unit Cells for a Novel Type of Holographic Surface [J].
Matekovits, L. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010, 9 :1251-1254
[8]   Modulated Metasurface Antennas for Space: Synthesis, Analysis and Realizations [J].
Minatti, Gabriele ;
Faenzi, Marco ;
Martini, Enrica ;
Caminita, Francesco ;
De Vita, Paolo ;
Gonzalez-Ovejero, David ;
Sabbadini, Marco ;
Maci, Stefano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (04) :1288-1300
[9]   Controlled Leaky-Wave Radiation From a Planar Configuration of Width-Modulated Microstrip Lines [J].
Podilchak, Symon K. ;
Matekovits, Ladislau ;
Freundorfer, Alois P. ;
Antar, Yahia M. M. ;
Orefice, Mario .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (10) :4957-4972
[10]   Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations [J].
Prakash, VVS ;
Mittra, R .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2003, 36 (02) :95-100