The birational geometry of moduli spaces of sheaves on the projective plane

被引:23
作者
Bertram, Aaron [1 ]
Martinez, Cristian [1 ]
Wang, Jie [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Moduli of sheaves; Bridgeland moduli space; Moduli of complexes; Bridgeland stability conditions; Birational geometry; VARIETIES;
D O I
10.1007/s10711-013-9927-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a close relation between wall crossings in the birational geometry of moduli space of Gieseker stable sheaves M-H (nu) on P-2 and mini-wall crossings in the stability manifold Stab (D-b(P-2)).
引用
收藏
页码:37 / 64
页数:28
相关论文
共 18 条
[1]  
Abramovich D, 2006, J REINE ANGEW MATH, V590, P89
[2]  
[Anonymous], 2010, GEOMETRY MODULI SPAC, DOI DOI 10.1017/CBO9780511711985
[3]   Bridgeland-stable moduli spaces for K-trivial surfaces [J].
Arcara, Daniele ;
Bertram, Aaron ;
Lieblich, Max .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :1-38
[4]   The minimal model program for the Hilbert scheme of points on P2 and Bridgeland stability [J].
Arcara, Daniele ;
Bertram, Aaron ;
Coskun, Izzet ;
Huizenga, Jack .
ADVANCES IN MATHEMATICS, 2013, 235 :580-626
[5]  
Bayer A., 2012, ARXIV12034613
[6]  
BERTRAM A., 2013, Birational geometry, rational curves, and arithmetic, P15
[7]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[8]   Stability conditions on K3 surfaces [J].
Bridgeland, Tom .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) :241-291
[9]   On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics [J].
Drezet, Jean-Marc ;
Maican, Mario .
GEOMETRIAE DEDICATA, 2011, 152 (01) :17-49
[10]  
DREZET JM, 1985, ANN SCI ECOLE NORM S, V18, P193