The Vlasov-Maxwell-Boltzmann System Near Maxwellians in the Whole Space with Very Soft Potentials

被引:20
作者
Duan, Renjun [1 ]
Lei, Yuanjie [2 ]
Yang, Tong [3 ,4 ]
Zhao, Huijiang [5 ,6 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Jinan Unv, Dept Math, Guangzhou, Peoples R China
[4] City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[5] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[6] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
POISSON-LANDAU SYSTEM; NEGATIVE SOBOLEV SPACES; ANGULAR CUTOFF; CLASSICAL-SOLUTIONS; PERIODIC BOX; EQUATION; DECAY; STABILITY; REGULARITY; PLASMA;
D O I
10.1007/s00220-017-2844-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since the work by Guo (Invent Math 153(3):593-630, 2003), it has remained an open problem to establish the global existence of perturbative classical solutions around a global Maxwellian to the Vlasov-Maxwell-Boltzmann system with the whole range of soft potentials. This ismainly due to the complex structure of the system, in particular, the degenerate dissipation at large velocity, the velocity-growth of the nonlinear term induced by the Lorentz force, and the regularity-loss of the electromagnetic fields. This paper solves this problem in the whole space provided that initial perturbation has sufficient regularity and velocity-integrability.
引用
收藏
页码:95 / 153
页数:59
相关论文
共 32 条
[1]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[2]  
[Anonymous], ARXIV10065523
[3]  
[Anonymous], 1985, SOBOLEV SPACES
[4]  
Chapman S, 1970, The Mathematical Theory of Non-uniform Gases
[5]   Global smooth dynamics of a fully ionized plasma with long-range collisions [J].
Duan, Renjun .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (04) :751-778
[6]   The Vlasov-Poisson-Boltzmann System without Angular Cutoff [J].
Duan, Renjun ;
Liu, Shuangqian .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 324 (01) :1-45
[7]   THE VLASOV-POISSON-BOLTZMANN SYSTEM FOR SOFT POTENTIALS [J].
Duan, Renjun ;
Yang, Tong ;
Zhao, Huijiang .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (06) :979-1028
[8]   STABILITY OF THE NONRELATIVISTIC VLASOV-MAXWELL-BOLTZMANN SYSTEM FOR ANGULAR NON-CUTOFF POTENTIALS [J].
Duan, Renjun ;
Liu, Shuangqian ;
Yang, Tong ;
Zhao, Huijiang .
KINETIC AND RELATED MODELS, 2013, 6 (01) :159-204
[9]   Optimal Large-Time Behavior of the Vlasov-Maxwell-Boltzmann System in the Whole Space [J].
Duan, Renjun ;
Strain, Robert M. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (11) :1497-1546
[10]  
Grad H., 1963, RAREFIED GAS DYN, P26