Kernel density estimator in an infinite-dimensional space with a rate of convergence in the case of diffusion process

被引:11
作者
Dabo-Niang, S [1 ]
机构
[1] Univ Paris 06, Paris, France
[2] CREST INSEE, Stat Lab, F-92245 Malakoff, France
关键词
density estimation; infinite-dimensional space; diffusion process;
D O I
10.1016/S0893-9659(04)90078-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the common probability density function of n i.i.d. observations at a fixed point, valued in an infinite-dimensional Banach space. A kernel estimator is proposed. Convergence in mean square is proved. Application to process of diffusion type is considered. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 16 条
[11]  
GEFFROY J, 1974, CR ACAD SCI A MATH, V278, P1449
[12]   A general approach to nonparametric histogram estimation [J].
Jacob, P ;
Oliveira, PE .
STATISTICS, 1995, 27 (1-2) :73-92
[13]  
KUO H., 1975, GAUSSIAN MEASURES BA
[14]  
LIPSTER RS, 1972, IZV AKAD NAUK SSSR M, V36, P839
[15]   REMARKS ON SOME NONPARAMETRIC ESTIMATES OF A DENSITY-FUNCTION [J].
ROSENBLATT, M .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (03) :832-837
[16]  
*STAPH, 2000, GROUP TRAV STAPH STA