Kernel density estimator in an infinite-dimensional space with a rate of convergence in the case of diffusion process

被引:11
作者
Dabo-Niang, S [1 ]
机构
[1] Univ Paris 06, Paris, France
[2] CREST INSEE, Stat Lab, F-92245 Malakoff, France
关键词
density estimation; infinite-dimensional space; diffusion process;
D O I
10.1016/S0893-9659(04)90078-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the common probability density function of n i.i.d. observations at a fixed point, valued in an infinite-dimensional Banach space. A kernel estimator is proposed. Convergence in mean square is proved. Application to process of diffusion type is considered. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:381 / 386
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 1997, FUNCTIONAL DATA ANAL
[2]  
[Anonymous], 1998, TRANSLATIONS MATH MO
[3]  
Bogachev V. I., 1998, Gaussian Measures
[4]  
BORELL C, 1977, ANN I H POINCARE B, V13, P231
[5]  
Bosq D., 2012, Linear Processes in Function Space: Theory and Applications, V149
[6]   A RELATION BETWEEN CHUNGS AND STRASSENS LAWS OF THE ITERATED LOGARITHM [J].
CSAKI, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 54 (03) :287-301
[7]   Kernel regression estimation when the regressor takes values in metric space [J].
Dabo-Niang, S ;
Rhomari, N .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) :75-80
[8]   Density estimation in an infinite dimensional space: Application to diffusion processes [J].
Dabo-Niang, S .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (03) :213-216
[9]   Fractal dimensionality and regression estimation in semi-normed vectorial spaces [J].
Ferraty, F ;
Vieu, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :139-142
[10]  
FERRATY F, IN PRESS TEST