A Gaussian Process Surrogate Model Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization Problems

被引:415
|
作者
Liu, Bo [1 ]
Zhang, Qingfu [2 ]
Gielen, Georges G. E. [3 ]
机构
[1] Glyndwr Univ, Dept Comp, Wrexham LL11 2AW, Wales
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] Katholieke Univ Leuven, ESAT MICAS, B-3000 Louvain, Belgium
关键词
Dimension reduction; expensive optimization; Gaussian process; prescreening; space mapping; surrogate models; surrogate model assisted evolutionary computation; GLOBAL OPTIMIZATION; APPROXIMATION; DESIGN;
D O I
10.1109/TEVC.2013.2248012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surrogate model assisted evolutionary algorithms (SAEAs) have recently attracted much attention due to the growing need for computationally expensive optimization in many real-world applications. Most current SAEAs, however, focus on small-scale problems. SAEAs for medium-scale problems (i.e., 20-50 decision variables) have not yet been well studied. In this paper, a Gaussian process surrogate model assisted evolutionary algorithm for medium-scale computationally expensive optimization problems (GPEME) is proposed and investigated. Its major components are a surrogate model-aware search mechanism for expensive optimization problems when a high-quality surrogate model is difficult to build and dimension reduction techniques for tackling the "curse of dimensionality." A new framework is developed and used in GPEME, which carefully coordinates the surrogate modeling and the evolutionary search, so that the search can focus on a small promising area and is supported by the constructed surrogate model. Sammon mapping is introduced to transform the decision variables from tens of dimensions to a few dimensions, in order to take advantage of Gaussian process surrogate modeling in a low-dimensional space. Empirical studies on benchmark problems with 20, 30, and 50 variables and a real-world power amplifier design automation problem with 17 variables show the high efficiency and effectiveness of GPEME. Compared to three state-of-the-art SAEAs, better or similar solutions can be obtained with 12% to 50% exact function evaluations.
引用
收藏
页码:180 / 192
页数:13
相关论文
共 50 条
  • [1] SURROGATE'S OPTIMA ASSISTED EVOLUTIONARY ALGORITHM FOR OPTIMIZATION OF EXPENSIVE PROBLEMS
    Cai, Xiwen
    Gao, Liang
    Li, Fan
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1696 - 1701
  • [2] A Surrogate Model Assisted Evolutionary Algorithm for Computationally Expensive Design Optimization Problems with Discrete Variables
    Liu, Bo
    Sun, Nan
    Zhang, Qingfu
    Gielen, Georges
    Grout, Vic
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1650 - 1657
  • [3] A Surrogate-Model-Assisted Evolutionary Algorithm for Computationally Expensive Design Optimization Problems with Inequality Constraints
    Liu, Bo
    Zhang, Qingfu
    Gielen, Georges
    SIMULATION-DRIVEN MODELING AND OPTIMIZATION, 2016, 153 : 347 - 370
  • [4] A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems
    Liu, Bo
    Koziel, Slawomir
    Zhang, Qingfu
    JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 12 : 28 - 37
  • [5] An Evolutionary Algorithm using GP surrogate model for expensive constrained optimization problems
    Li, Meiyi
    Zhang, Hai
    Lv, Rong
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY APPLICATIONS (ICISTA-2013), 2013, 58 : 133 - 137
  • [6] A surrogate-assisted evolutionary algorithm with knowledge transfer for expensive multimodal optimization problems
    Du, Wenhao
    Ren, Zhigang
    Wang, Jihong
    Chen, An
    INFORMATION SCIENCES, 2024, 652
  • [7] Gaussian Process Assisted Differential Evolution Algorithm for Computationally Expensive Optimization Problems
    Su, Guoshao
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 261 - 265
  • [8] A radial basis function surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems
    Chen, Guodong
    Zhang, Kai
    Xue, Xiaoming
    Zhang, Liming
    Yao, Chuanjin
    Wang, Jian
    Yao, Jun
    APPLIED SOFT COMPUTING, 2022, 116
  • [9] A Surrogate-Assisted Memetic Co-evolutionary Algorithm for Expensive Constrained Optimization Problems
    Goh, C. K.
    Lim, D.
    Ma, L.
    Ong, Y. S.
    Dutta, P. S.
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 744 - 749
  • [10] A Surrogate-Assisted Evolutionary Algorithm for Seeking Multiple Solutions of Expensive Multimodal Optimization Problems
    Ji, Jing-Yu
    Tan, Zusheng
    Zeng, Sanyou
    See-To, Eric W. K.
    Wong, Man-Leung
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 377 - 388