On the minimal positive standardizer of a parabolic subgroup of an Artin-Tits group

被引:8
作者
Cumplido, Maria [1 ,2 ]
机构
[1] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[2] Univ Seville, Inst Matemat IMUS, Dept Algebra, Ave Reina Mercedes S-N, E-41012 Seville, Spain
关键词
Braid groups; Curve complex; Artin groups; Parabolic subgroups; Garside theory;
D O I
10.1007/s10801-018-0837-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimal standardizer of a curve system on a punctured disk is the minimal positive braid that transforms it into a system formed only by round curves. We give an algorithm to compute it in a geometrical way. Then, we generalize this problem algebraically to parabolic subgroups of Artin-Tits groups of spherical type and we show that, to compute the minimal standardizer of a parabolic subgroup, it suffices to compute the pn-normal form of a particular central element.
引用
收藏
页码:337 / 359
页数:23
相关论文
共 21 条
[1]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[2]   ARTIN GROUPS AND COXETER GROUPS [J].
BRIESKORN, E ;
SAITO, K .
INVENTIONES MATHEMATICAE, 1972, 17 (04) :245-+
[3]   Dual Garside structure and reducibility of braids [J].
Calvez, Matthieu .
JOURNAL OF ALGEBRA, 2012, 356 (01) :355-373
[4]  
Caruso S, 2013, THESIS
[5]   GEODESIC AUTOMATION AND GROWTH FUNCTIONS FOR ARTIN GROUPS OF FINITE-TYPE [J].
CHARNEY, R .
MATHEMATISCHE ANNALEN, 1995, 301 (02) :307-324
[6]  
Coxeter H.S.M., 1935, J. London Math. Soc., Vs1-10, P21, DOI [10.1112/jlms/s1-10.37.21, DOI 10.1112/JLMS/S1-10.37.21]
[7]   Gaussian groups and Garside groups, two generalisations of Artin groups [J].
Dehornoy, P ;
Paris, L .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 :569-604
[8]  
Dehornoy P, 2002, PANORAMAS SYNTHESES
[9]  
Dehornoy P, 2008, MATH SURVEYS MONOGRA
[10]  
DYNNIKOV I, 1987, JEMS, V9, P801, DOI DOI 10.4171/JEMS/98