Sparse partial least-squares regression for high-throughput survival data analysis

被引:10
作者
Lee, Donghwan [1 ]
Lee, Youngjo [2 ]
Pawitan, Yudi [1 ]
Lee, Woojoo [3 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17177 Stockholm, Sweden
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
[3] Inha Univ, Dept Stat, Inchon, South Korea
基金
新加坡国家研究基金会;
关键词
high-dimensional problem; partial least-squares; penalized likelihood; sparsity; survival analysis; VARIABLE SELECTION; COX REGRESSION; BREAST-CANCER; SHRINKAGE; MODEL; LASSO; LIFE;
D O I
10.1002/sim.5975
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The partial least-square (PLS) method has been adapted to the Cox's proportional hazards model for analyzing high-dimensional survival data. But because the latent components constructed in PLS employ all predictors regardless of their relevance, it is often difficult to interpret the results. In this paper, we propose a new formulation of sparse PLS (SPLS) procedure for survival data to allow simultaneous sparse variable selection and dimension reduction. We develop a computing algorithm for SPLS by modifying an iteratively reweighted PLS algorithm and illustrate the method with the Swedish and the Netherlands Cancer Institute breast cancer datasets. Through the numerical studies, we find that our SPLS method generally performs better than the standard PLS and sparse Cox regression methods in variable selection and prediction. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:5340 / 5352
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 1983, Generalized Linear Models
[2]   Prediction by supervised principal components [J].
Bair, E ;
Hastie, T ;
Paul, D ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :119-137
[3]   Predicting survival from microarray data -: a comparative study [J].
Bovelstad, H. M. ;
Nygard, S. ;
Storvold, H. L. ;
Aldrin, M. ;
Borgan, O. ;
Frigessi, A. ;
Lingjaerde, O. C. .
BIOINFORMATICS, 2007, 23 (16) :2080-2087
[4]   Sparse partial least squares regression for simultaneous dimension reduction and variable selection [J].
Chun, Hyonho ;
Keles, Suenduez .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :3-25
[5]  
COX DR, 1972, J R STAT SOC B, V34, P187
[6]  
DABROWSKA DM, 1987, BIOMETRIKA, V74, P799
[7]   AN EXTENSION OF COX REGRESSION-MODEL [J].
JOHANSEN, S .
INTERNATIONAL STATISTICAL REVIEW, 1983, 51 (02) :165-174
[8]   Sparse partial least-squares regression and its applications to high-throughput data analysis [J].
Lee, Donghwan ;
Lee, Woojoo ;
Lee, Youngjo ;
Pawitan, Yudi .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2011, 109 (01) :1-8
[9]   Sparse Canonical Covariance Analysis for High-throughput Data [J].
Lee, Woojoo ;
Lee, Donghwan ;
Lee, Youngjo ;
Pawitan, Yudi .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
[10]  
Lee Y, 2009, 20094 STANF U DEP ST