Effect of titanium dioxide (TiO2) nanoparticle coating on the detection performance of microfiber knot resonator sensors for relative humidity measurement

被引:28
作者
Faruki, Md Jahid [1 ]
Ab Razak, Mohd Zulhakimi [1 ]
Azzuhri, Saaidal R. [1 ]
Rahman, Muhammad Towfiqur [1 ]
Soltanian, Mohammad Reza Khalifeh [1 ]
Brambilla, Gilberto [2 ]
Rahman, B. M. Azizur [3 ]
Grattan, Kenneth T. V. [3 ]
De La Rue, Richard [4 ]
Ahmad, Harith [1 ]
机构
[1] Univ Malaya, Photon Res Ctr, Kuala Lumpur 50603, Malaysia
[2] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1TW, Hants, England
[3] City Univ London, Sch Math Comp Sci & Engn, Northampton Sq, Northampton EC1V 0HB, England
[4] Univ Glasgow, Sch Engn, Optoelect Res Grp, Rankine Bldg,Oakfield Ave, Glasgow G12 8LT, Lanark, Scotland
关键词
Fiber Sensor; Tapered Fiber; Microfiber Knot Resonator; Humidity Sensor; Titanium Dioxide (TiO2); SENSITIVITY;
D O I
10.1166/mex.2016.1342
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, the sensitivity and the linearity of the un-coated and TiO2-coated microfiber knot resonator (MKR) have been analyzed. The MKR is very sensitive to humidity changes since its refractive index is strongly humidity dependent. As a result, shifts occur in the resonance wavelength and there are also changes in output power. The un-coated MKR showed a sensitivity of 1.3 pm/% RH, in terms of the resonance wavelength, and a sensitivity of 0.0626 dB/% RH for the transmitted output power. The sensitivity increased greatly after the deposition of a porous TiO2 nanoparticle coating on the MKR. The TiO2-coated MKR showed an improved sensitivity of 2.5 pm/% RH, with respect to the resonance wavelength, and 0.0836 dB/% RH for the transmitted output power. This MKR sensor has the potential for use in a variety of humidity sensing applications.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 19 条
[1]   Humidity sensor based on microfiber resonator with reduced graphene oxide [J].
Ahmad, H. ;
Rahman, M. T. ;
Sakeh, S. N. A. ;
Razak, M. Z. A. ;
Zulkifli, M. Z. .
OPTIK, 2016, 127 (05) :3158-3161
[2]   High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers [J].
Alvarez-Herrero, A ;
Guerrero, H ;
Levy, D .
IEEE SENSORS JOURNAL, 2004, 4 (01) :52-56
[3]   Titanium dioxide nanoparticle based optical fiber humidity sensor with linear response and enhanced sensitivity [J].
Aneesh, R. ;
Khijwania, Sunil K. .
APPLIED OPTICS, 2012, 51 (12) :2164-2171
[4]  
[Anonymous], 1880, ANN PHYS-NEW YORK, DOI [10.1002/andp.18802450406, DOI 10.1002/ANDP.18802450406]
[5]   Humidity sensors: A review of materials and mechanisms [J].
Chen, Z ;
Lu, C .
SENSOR LETTERS, 2005, 3 (04) :274-295
[6]   Deposition of carbon nanotubes around microfiber via evanascent light [J].
Kashiwagi, Ken ;
Yamashita, Shinji .
OPTICS EXPRESS, 2009, 17 (20) :18364-18370
[7]   HUMIDITY SENSORS [J].
KULWICKI, BM .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (04) :697-708
[8]   Current sensor based on microfiber knot resonator [J].
Lim, K. S. ;
Harun, S. W. ;
Damanhuri, S. S. A. ;
Jasim, A. A. ;
Tio, C. K. ;
Ahmad, H. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 167 (01) :60-62
[9]  
Lorentz H.A., 1906, Versuch einer Theorie der Electrischen und Optischen Erscheinungen in Bewegten Korpern (Teubner)
[10]  
Lorenz L., 1880, Annalen der Physik, V247, P70, DOI [10.1002/ANDP.18802470905, DOI 10.1002/ANDP.18802470905]