On the moving plane method for nonlocal problems in bounded domains

被引:24
作者
Barrios, Begona [1 ]
Montoro, Luigi [2 ]
Sciunzi, Berardino [2 ]
机构
[1] Univ Autonoma Madrid, Dept Math, Madrid 28009, Spain
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2018年 / 135卷 / 01期
关键词
QUALITATIVE PROPERTIES; HARMONIC-FUNCTIONS; REGULARITY; SYMMETRY; OPERATORS; CONTINUITY; DIFFUSION; EQUATIONS; SOBOLEV; THEOREM;
D O I
10.1007/s11854-018-0031-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlocal problem involving the fractional Laplacian and the Hardy potential in bounded smooth domains. Exploiting the moving plane method and some weak and strong comparison principles, we deduce symmetry and monotonicity properties of positive solutions under zero Dirichlet boundary conditions.
引用
收藏
页码:37 / 57
页数:21
相关论文
共 53 条
[1]  
Adams RA., 1975, Sobolev Spaces
[2]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[3]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[4]  
[Anonymous], 1979, Comm. Partial Differential Equations, DOI 10.1080/03605307908820119
[5]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[6]   Some remarks on the solvability of non-local elliptic problems with the Hardy potential [J].
Barrios, B. ;
Medina, M. ;
Peral, I. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
[7]  
Barrios B, 2014, ANN SCUOLA NORM-SCI, V13, P609
[8]   A Widder's Type Theorem for the Heat Equation with Nonlocal Diffusion [J].
Barrios, Begona ;
Peral, Ireneo ;
Soria, Fernando ;
Valdinoci, Enrico .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (02) :629-650
[9]   Holder continuity of harmonic functions with respect to operators of variable order [J].
Bass, RF ;
Kassmann, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (08) :1249-1259
[10]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905