Superradiant Phase Transition in Electronic Systems and Emergent Topological Phases

被引:57
作者
Guerci, Daniele [1 ,2 ]
Simon, Pascal [2 ]
Mora, Christophe [1 ]
机构
[1] Univ Paris, Lab Mat & Phenomenes Quant, CNRS, F-75013 Paris, France
[2] Univ Paris Saclay, Lab Phys Solides, CNRS, F-91405 Orsay, France
关键词
NO-GO THEOREM; 2-LEVEL ATOMS; QUANTUM; ENTANGLEMENT; MODEL; GAS;
D O I
10.1103/PhysRevLett.125.257604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a general criterion for determining the onset of superradiant phase transition in electronic bands coupled to a cavity field, with possibly electron-electron interactions. For longitudinal superradiance in 2D or genuine 1D systems, we prove that it is always prevented, thereby extending existing no-go theorems. Instead, a superradiant phase transition can occur to a nonuniform transverse cavity field and we give specific examples in noninteracting models, either through Fermi surface nesting or parabolic band touching. Investigating the resulting time-reversal symmetry breaking superradiant states, we find in the former case Fermi surface lifting down to four Dirac points on a square lattice model, with topologically protected zero modes, and in the latter case topological bands with nonzero Chern number on an hexagonal lattice.
引用
收藏
页数:6
相关论文
共 67 条
[1]   LARGE-N LIMIT OF THE HEISENBERG-HUBBARD MODEL - IMPLICATIONS FOR HIGH-TC SUPERCONDUCTORS [J].
AFFLECK, I ;
MARSTON, JB .
PHYSICAL REVIEW B, 1988, 37 (07) :3774-3777
[2]   Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle [J].
Ahn, Junyeong ;
Park, Sungjoon ;
Yang, Bohm-Jung .
PHYSICAL REVIEW X, 2019, 9 (02)
[3]   Boundary conditions for Dirac fermions on a terminated honeycomb lattice [J].
Akhmerov, A. R. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2008, 77 (08)
[4]   Theory of photon condensation in a spatially varying electromagnetic field [J].
Andolina, G. M. ;
Pellegrino, F. M. D. ;
Giovannetti, V ;
MacDonald, A. H. ;
Polini, M. .
PHYSICAL REVIEW B, 2020, 102 (12)
[5]   Cavity quantum electrodynamics of strongly correlated electron systems: A no-go theorem for photon condensation [J].
Andolina, G. M. ;
Pellegrino, F. M. D. ;
Giovannetti, V ;
MacDonald, A. H. ;
Polini, M. .
PHYSICAL REVIEW B, 2019, 100 (12)
[6]  
[Anonymous], 2005, Quantum Theory of the Electron Liquid
[7]   LASER COOLING BELOW THE ONE-PHOTON RECOIL ENERGY BY VELOCITY-SELECTIVE COHERENT POPULATION TRAPPING [J].
ASPECT, A ;
ARIMONDO, E ;
KAISER, R ;
VANSTEENKISTE, N ;
COHENTANNOUDJI, C .
PHYSICAL REVIEW LETTERS, 1988, 61 (07) :826-829
[8]   Stability of polarizable materials against superradiant phase transition [J].
Bamba, Motoaki ;
Ogawa, Tetsuo .
PHYSICAL REVIEW A, 2014, 90 (06)
[9]   Polaritons in van der Waals materials [J].
Basov, D. N. ;
Fogler, M. M. ;
Garcia de Abajo, F. J. .
SCIENCE, 2016, 354 (6309)
[10]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1