Uniqueness and numerical scheme for the Robin coefficient identification of the time-fractional diffusion equation

被引:7
|
作者
Wang, Jun-Gang [1 ]
Ran, Yu-Hong [2 ]
Yuan, Zhan-Bin [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian, Shaanxi, Peoples R China
[2] Northwest Univ, Sch Math, Ctr Nonlinear Studies, Xian, Shaanxi, Peoples R China
关键词
Inverse problem; Robin coefficient; Fractional diffusion equation; Uniqueness;
D O I
10.1016/j.camwa.2018.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem of determining the Robin coefficient of fractional diffusion equation from a nonlocal boundary condition. Based on the property of Caputo fractional derivative, the uniqueness is proved. The numerical schemes for the direct problem and the inverse problem are developed. Three examples are given to show the effectiveness of the presented methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4107 / 4114
页数:8
相关论文
共 50 条
  • [21] Inverse Coefficient Problem for a Time-Fractional Diffusion Equation in the Bounded Domain
    Durdiev, D. K.
    Jumaev, J. J.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 548 - 557
  • [22] An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation
    Oulmelk, A.
    Afraites, L.
    Hadri, A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01)
  • [23] ON THE SOURCE IDENTIFICATION PROBLEM FOR A DEGENERATE TIME-FRACTIONAL DIFFUSION EQUATION
    Nouar, Maroua
    Chattouh, Abdeldjalil
    JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 15 (05): : 84 - 98
  • [24] A two-dimensional diffusion coefficient determination problem for the time-fractional equation
    Durdiev, Durdimurod K.
    Rahmonov, Askar A.
    Bozorov, Zavqiddin R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10753 - 10761
  • [25] Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation
    Li, Zhiyuan
    Yamamoto, Masahiro
    APPLICABLE ANALYSIS, 2015, 94 (03) : 570 - 579
  • [26] Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation
    Luchko, Yuri
    Rundell, William
    Yamamoto, Masahiro
    Zuo, Lihua
    INVERSE PROBLEMS, 2013, 29 (06)
  • [27] Numerical estimation of the Robin coefficient in a stationary diffusion equation
    Jin, Bangti
    Zou, Jun
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (03) : 677 - 701
  • [28] Uniqueness result for a fractional diffusion coefficient identification problem
    Fadhel Jday
    Ridha Mdimagh
    Boundary Value Problems, 2019
  • [29] Time-fractional diffusion equation for signal smoothing
    Li, Yuanlu
    Liu, Fawang
    Turner, Ian W.
    Li, Tao
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 326 : 108 - 116
  • [30] Uniqueness result for a fractional diffusion coefficient identification problem
    Jday, Fadhel
    Mdimagh, Ridha
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)