The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation

被引:0
|
作者
Chen, Wei-Ning [1 ]
Ozgur, Ayfer [1 ]
Kairouz, Peter [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Google Res, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the Poisson Binomial mechanism (PBM), a discrete differential privacy mechanism for distributed mean estimation (DME) with applications to federated learning and analytics. We provide a tight analysis of its privacy guarantees, showing that it achieves the same privacyaccuracy trade-offs as the continuous Gaussian mechanism. Our analysis is based on a novel bound on the R ' enyi divergence of two Poisson binomial distributions that may be of independent interest. Unlike previous discrete DP schemes based on additive noise, our mechanism encodes local information into a parameter of the binomial distribution, and hence the output distribution is discrete with bounded support. Moreover, the support does not increase as the privacy budget e. epsilon as in the case of additive schemes which require the addition of more noise to achieve higher privacy; on the contrary, the support becomes smaller as epsilon -> 0. The bounded support enables us to combine our mechanism with secure aggregation (SecAgg), a multi-party cryptographic protocol, without the need of performing modular clipping which results in an unbiased estimator of the sum of the local vectors. This in turn allows us to apply it in the private FL setting and provide an upper bound on the convergence rate of the SGD algorithm. Moreover, since the support of the output distribution becomes smaller as epsilon ->. 0, the communication cost of our scheme decreases with the privacy constraint e, outperforming all previous distributed DP schemes based on additive noise in the high privacy or low communication regimes.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Secure Aggregation for Clustered Federated Learning With Passive Adversaries
    Sami, Hasin Us
    Guler, Basak
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (07) : 4117 - 4133
  • [22] Federated Learning with Autotuned Communication-Efficient Secure Aggregation
    Bonawitz, Keith
    Salehi, Fariborz
    Konecny, Jakub
    McMahan, Brendan
    Gruteser, Marco
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 1222 - 1226
  • [23] Fast Secure Aggregation for Privacy-Preserving Federated Learning
    Liu, Yanjun
    Qian, Xinyuan
    Li, Hongwei
    Hao, Meng
    Guo, Song
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3017 - 3022
  • [24] RVFL: Rational Verifiable Federated Learning Secure Aggregation Protocol
    Mu, Xianyu
    Tian, Youliang
    Zhou, Zhou
    Wang, Shuai
    Xiong, Jinbo
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (14): : 25147 - 25161
  • [25] Towards Efficient Secure Aggregation for Model Update in Federated Learning
    Wu, Danye
    Pan, Miao
    Xu, Zhiwei
    Zhang, Yujun
    Han, Zhu
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [26] Secure fair aggregation based on category grouping in federated learning
    Zhou, Jie
    Hu, Jinlin
    Xue, Jiajun
    Zeng, Shengke
    INFORMATION FUSION, 2025, 117
  • [27] SHIELD - Secure Aggregation Against Poisoning in Hierarchical Federated Learning
    Siriwardhana, Yushan
    Porambage, Pawani
    Liyanage, Madhusanka
    Marchal, Samuel
    Ylianttila, Mika
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2025, 22 (02) : 1845 - 1863
  • [28] Fast Secure Aggregation With High Dropout Resilience for Federated Learning
    Yang, Shisong
    Chen, Yuwen
    Yang, Zhen
    Li, Bowen
    Liu, Huan
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (03): : 1501 - 1514
  • [29] Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation
    Yang, Zhen
    Zhou, Ming
    Yu, Haiyang
    Sinnott, Richard O.
    Liu, Huan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (01): : 205 - 222
  • [30] SASH: Efficient Secure Aggregation Based on SHPRG For Federated Learning
    Liu, Zizhen
    Chen, Si
    Ye, Jing
    Fan, Junfeng
    Li, Huawei
    Li, Xiaowei
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1243 - 1252