Multistep collocation methods for Volterra Integral Equations

被引:82
作者
Conte, D. [1 ]
Paternoster, B. [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
关键词
Numerical methods for Volterra Integral Equations; Multistep collocation methods; Multistep Runge-Kutta methods; RUNGE-KUTTA METHODS; FAMILY; 2-STEP;
D O I
10.1016/j.apnum.2009.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce multistep collocation methods for the numerical integration of Volterra Integral Equations, which depend on the numerical solution in a fixed number of previous time steps. We describe the constructive technique, analyze the order of the resulting methods and their linear stability properties. Numerical experiments confirm the theoretical expectations. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1721 / 1736
页数:16
相关论文
共 13 条
[1]   STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BELLEN, A ;
JACKIEWICZ, Z ;
VERMIGLIO, R ;
ZENNARO, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :103-118
[2]  
Brunner, 2010, 7 LECTIRES THEORY NU
[3]  
BRUNNER H, 1986, CWI MONOGRAPHS, V3
[4]   Fast Runge-Kutta methods for nonlinear convolution systems of volterra integral equations [J].
Capobianco, G. ;
Conte, D. ;
Del Prete, I. ;
Russo, E. .
BIT NUMERICAL MATHEMATICS, 2007, 47 (02) :259-275
[5]   Two-step almost collocation methods for Volterra integral equations [J].
Conte, D. ;
Jackiewicz, Z. ;
Paternoster, B. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) :839-853
[6]  
Conte D, 2007, AIP CONF PROC, V936, P128
[7]   Fast collocation methods for Volterra integral equations of convolution type [J].
Conte, Dajana ;
Del Prete, Ida .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 196 (02) :652-663
[8]  
D'Ambrosio R, 2007, AIP CONF PROC, V936, P45
[9]  
GUILLOU A, 1969, REV FR INFORM RECH O, V3, P17
[10]  
JACKIEWICZ Z, GEN LINEAR IN PRESS