Chemically suppressing redox reaction at the NiOx/perovskite interface in narrow bandgap perovskite solar cells to exceed a power conversion efficiency of 20%

被引:21
作者
Bian, Hongyu [1 ,2 ]
You, Jiayu [1 ]
Xu, Cunyun [1 ]
He, Xiaofeng [1 ,2 ]
Wang, Meng [3 ]
Yao, YanQing [4 ]
Zeng, Wenqi [1 ,2 ]
Guo, Pengju [1 ]
Zhou, Hongyu [1 ,2 ]
Lu, Dengcheng [1 ]
Dai, Zhongjun [1 ,2 ]
Zhang, Sam [1 ,2 ]
Song, Qunliang [1 ]
机构
[1] Southwest Univ, Inst Clean Energy & Adv Mat, Sch Mat & Energy, Chongqing 400715, Peoples R China
[2] Southwest Univ, Ctr Adv Thin Films & Devices, Sch Mat & Energy, Chongqing 40075, Peoples R China
[3] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610064, Peoples R China
[4] Zunyi Normal Coll, Sch Phys & Elect Sci, Zunyi 563002, Peoples R China
关键词
ASCORBIC-ACID; OXIDATION; PROGRESS;
D O I
10.1039/d2ta06211a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NiOx as a type of inorganic hole-transporting layer (HTL) material in narrow bandgap perovskite solar cells (NBG PSCs) showed exceptional stability but suffered a considerably poorer performance compared with NBG PSCs with commonly used PEDOT:PSS as the HTL. Herein, we found that redox reactions would occur at the interface between Ni3+ on the NiOx surface and the easily oxidized Sn2+ in the perovskite, causing considerable non-radiative recombination centers. On this basis, we proposed a bifacial reduction strategy at the interface to boost the performance of NBG PSCs. By using a reductive reagent ascorbic acid to reduce the Ni3+/Ni2+ ratio on the surface of NiOx beforehand, the possibility of contact between Ni3+ on the surface of NiOx and perovskite is chemically reduced substantially, suppressing the redox reaction between them as well as the non-radiative recombination at the interface. By applying this strategy, the device's power conversion efficiency is elevated from 17.81% to 20.48%, with 91% remaining after 1128 hours of storage in a nitrogen-filled glovebox.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 46 条
[1]   Stabilization of Inorganic CsPb0.5Sn0.5I2Br Perovskite Compounds by Antioxidant Tea Polyphenol [J].
Ban, Huaxia ;
Sun, Qiang ;
Zhang, Tao ;
Li, Hao ;
Shen, Yan ;
Wang, Mingkui .
SOLAR RRL, 2020, 4 (03)
[2]   Current progress and future perspectives for organic/inorganic perovskite solar cells [J].
Boix, Pablo P. ;
Nonomura, Kazuteru ;
Mathews, Nripan ;
Mhaisalkar, Subodh G. .
MATERIALS TODAY, 2014, 17 (01) :16-23
[3]   Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Shallcross, R. Clayton ;
Moot, Taylor ;
Kerner, Ross ;
Bertoluzzi, Luca ;
Onno, Arthur ;
Kavadiya, Shalinee ;
Chosy, Cullen ;
Wolf, Eli J. ;
Werner, Jeremie ;
Raiford, James A. ;
de Paula, Camila ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Berry, Joseph J. ;
Bent, Stacey F. ;
Holman, Zachary C. ;
Luther, Joseph M. ;
Ratcliff, Erin L. ;
Armstrong, Neal R. ;
McGehee, Michael D. .
JOULE, 2020, 4 (08) :1759-1775
[4]   High-Performance Tin-Lead Mixed-Perovskite Solar Cells with Vertical Compositional Gradient [J].
Cao, Jiupeng ;
Hok-Leung Loi ;
Xu, Yang ;
Guo, Xuyun ;
Wang, Naixiang ;
Liu, Chun-ki ;
Wang, Tianyue ;
Cheng, Haiyang ;
Zhu, Ye ;
Li, Mitch Guijun ;
Wai-Yeung Wong ;
Yan, Feng .
ADVANCED MATERIALS, 2022, 34 (06)
[5]   Band alignment towards high-efficiency NiOx-based Sn-Pb mixed perovskite solar cells [J].
Chen, Hao ;
Peng, Zijian ;
Xu, Kaimin ;
Wei, Qi ;
Yu, Danni ;
Han, Congcong ;
Li, Hansheng ;
Ning, Zhijun .
SCIENCE CHINA-MATERIALS, 2021, 64 (03) :537-546
[6]   Unveiling Roles of Tin Fluoride Additives in High-Efficiency Low-Bandgap Mixed Tin-Lead Perovskite Solar Cells [J].
Chen, Qiyu ;
Luo, Jincheng ;
He, Rui ;
Lai, Huagui ;
Ren, Shengqiang ;
Jiang, Yiting ;
Wan, Zhenxi ;
Wang, Wenwu ;
Hao, Xia ;
Wang, Ye ;
Zhang, Jingquan ;
Constantinou, Iordania ;
Wang, Changlei ;
Wu, Lili ;
Fu, Fan ;
Zhao, Dewei .
ADVANCED ENERGY MATERIALS, 2021, 11 (29)
[7]   Composition and Interface Engineering for Efficient and Thermally Stable Pb-Sn Mixed Low-Bandgap Perovskite Solar Cells [J].
Chi, Dan ;
Huang, Shihua ;
Zhang, Meiying ;
Mu, Shaiqiang ;
Zhao, Yang ;
Chen, Yong ;
You, Jingbi .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (51)
[8]   Promises and challenges of perovskite solar cells [J].
Correa-Baena, Juan-Pablo ;
Saliba, Michael ;
Buonassisi, Tonio ;
Graetzel, Michael ;
Abate, Antonio ;
Tress, Wolfgang ;
Hagfeldt, Anders .
SCIENCE, 2017, 358 (6364) :739-744
[9]  
Du M., 2022, JOULE, V6, P1931, DOI DOI 10.1016/J.JOULE.2022.06.026
[10]   Perovskite-perovskite tandem photovoltaics with optimized band gaps [J].
Eperon, Giles E. ;
Leijtens, Tomas ;
Bush, Kevin A. ;
Prasanna, Rohit ;
Green, Thomas ;
Wang, Jacob Tse-Wei ;
McMeekin, David P. ;
Volonakis, George ;
Milot, Rebecca L. ;
May, Richard ;
Palmstrom, Axel ;
Slotcavage, Daniel J. ;
Belisle, Rebecca A. ;
Patel, Jay B. ;
Parrott, Elizabeth S. ;
Sutton, Rebecca J. ;
Ma, Wen ;
Moghadam, Farhad ;
Conings, Bert ;
Babayigit, Aslihan ;
Boyen, Hans-Gerd ;
Bent, Stacey ;
Giustino, Feliciano ;
Herz, Laura M. ;
Johnston, Michael B. ;
McGehee, Michael D. ;
Snaith, Henry J. .
SCIENCE, 2016, 354 (6314) :861-865