A nonsmooth Morse-Sard theorem for subanalytic functions

被引:24
作者
Bolte, Jerome
Daniilidis, Aris
Lewis, Adrian
机构
[1] Univ Paris 06, Equipe Combinatoire & Optimisat, UMR 7090, F-75252 Paris, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Cerdanyola Del, Spain
[3] Cornell Univ, Sch Operat Res & Ind Engn, Ithaca, NY 14853 USA
关键词
critical point; nonsmooth analysis; nonregular function; Morse-Sard theorem; semialgebraic function; subanalytic function;
D O I
10.1016/j.jmaa.2005.07.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
According to the Morse-Sard theorem. any sufficiently smooth function on a Euclidean space remains constant along any arc of critical points. We prove here a theorem of Morse-Sard type suitable as a tool in variational analysis: we broaden the definition of a critical point to the standard notion in nonsmooth optimization. while we restrict the functions under consideration to be semialgebraic or subanalytic. We make no assumption of subdifferential regularity. Lojasiewiez-type inequalities for nonsmooth functions follow quickly from tools of the kind we develop, leading to convergence theory for subgradient dynamical systems. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:729 / 740
页数:12
相关论文
共 22 条
  • [1] [Anonymous], RAAG NOTES
  • [2] [Anonymous], 1984, B ACAD POL SCI SER M
  • [3] Benedetti R., 1990, Real Algebraic and Semi-Algebraic Sets
  • [4] Bierstone E., 1988, PUBL MATH-PARIS, V67, P5
  • [5] Bochnak J., 1998, REAL ALGEBRAIC GEOME
  • [6] BOLTE J, LOJASIEWICZ INEQUALI
  • [7] Whitney's example by way of Assouad's embedding
    Hajlasz, P
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) : 3463 - 3467
  • [8] KURDYKA K, 1994, CR ACAD SCI I-MATH, V318, P129
  • [9] Kurdyka K, 2000, J DIFFER GEOM, V56, P67
  • [10] LOJASIEWICZ S, 1993, ANN I FOURIER, V43, P1575