Teleportation-based continuous variable quantum cryptography

被引:5
作者
Luiz, F. S. [1 ]
Rigolin, Gustavo [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quantum communication; Quantum cryptography; Quantum teleportation; KEY DISTRIBUTION;
D O I
10.1007/s11128-016-1504-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a continuous variable (CV) quantum key distribution (QKD) scheme based on the CV quantum teleportation of coherent states that yields a raw secret key made up of discrete variables for both Alice and Bob. This protocol preserves the efficient detection schemes of current CV technology (no single-photon detection techniques) and, at the same time, has efficient error correction and privacy amplification schemes due to the binary modulation of the key. We show that for a certain type of incoherent attack, it is secure for almost any value of the transmittance of the optical line used by Alice to share entangled two-mode squeezed states with Bob (no 3 dB or 50% loss limitation characteristic of beam splitting attacks). The present CVQKD protocol works deterministically (no postselection needed) with efficient direct reconciliation techniques (no reverse reconciliation) in order to generate a secure key and beyond the 50% loss case at the incoherent attack level.
引用
收藏
页数:31
相关论文
共 58 条
[41]   Security of quantum cryptography using balanced homodyne detection [J].
Namiki, R ;
Hirano, T .
PHYSICAL REVIEW A, 2003, 67 (02) :7
[42]   Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection [J].
Namiki, Ryo ;
Hirano, Takuya .
PHYSICAL REVIEW A, 2006, 74 (03)
[43]   Security bounds for continuous variables quantum key distribution -: art. no. 020505 [J].
Navascués, M ;
Acín, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (02)
[44]   Optimality of Gaussian attacks in continuous-variable quantum cryptography [J].
Navascues, Miguel ;
Grosshans, Frederic ;
Acin, Antonio .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[45]   Continuous-variable quantum cryptography using two-way quantum communication [J].
Pirandola, Stefano ;
Mancini, Stefano ;
Lloyd, Seth ;
Braunstein, Samuel L. .
NATURE PHYSICS, 2008, 4 (09) :726-730
[46]  
Pirandola S, 2015, NAT PHOTONICS, V9, P397, DOI [10.1038/NPHOTON.2015.83, 10.1038/nphoton.2015.83]
[47]   Continuous variable quantum cryptography [J].
Ralph, TC .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[48]   Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations [J].
Reid, MD .
PHYSICAL REVIEW A, 2000, 62 (06) :062308-062301
[49]   de Finetti Representation Theorem for Infinite-Dimensional Quantum Systems and Applications to Quantum Cryptography [J].
Renner, R. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)
[50]   The security of practical quantum key distribution [J].
Scarani, Valerio ;
Bechmann-Pasquinucci, Helle ;
Cerf, Nicolas J. ;
Dusek, Miloslav ;
Luetkenhaus, Norbert ;
Peev, Momtchil .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1301-1350