Teleportation-based continuous variable quantum cryptography

被引:5
作者
Luiz, F. S. [1 ]
Rigolin, Gustavo [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quantum communication; Quantum cryptography; Quantum teleportation; KEY DISTRIBUTION;
D O I
10.1007/s11128-016-1504-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a continuous variable (CV) quantum key distribution (QKD) scheme based on the CV quantum teleportation of coherent states that yields a raw secret key made up of discrete variables for both Alice and Bob. This protocol preserves the efficient detection schemes of current CV technology (no single-photon detection techniques) and, at the same time, has efficient error correction and privacy amplification schemes due to the binary modulation of the key. We show that for a certain type of incoherent attack, it is secure for almost any value of the transmittance of the optical line used by Alice to share entangled two-mode squeezed states with Bob (no 3 dB or 50% loss limitation characteristic of beam splitting attacks). The present CVQKD protocol works deterministically (no postselection needed) with efficient direct reconciliation techniques (no reverse reconciliation) in order to generate a secure key and beyond the 50% loss case at the incoherent attack level.
引用
收藏
页数:31
相关论文
共 58 条
[1]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   Tight bounds for the eavesdropping collective attacks on general CV-QKD protocols that involve non-maximally entanglement [J].
Becir, A. ;
Wahiddin, M. R. B. .
QUANTUM INFORMATION PROCESSING, 2013, 12 (02) :1155-1171
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[5]   Quantum key distribution using continuous-variable non-Gaussian states [J].
Borelli, L. F. M. ;
Aguiar, L. S. ;
Roversi, J. A. ;
Vidiella-Barranco, A. .
QUANTUM INFORMATION PROCESSING, 2016, 15 (02) :893-904
[6]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[7]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[8]   Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311 [J].
Cerf, NJ ;
Lévy, M ;
Van Assche, G .
PHYSICAL REVIEW A, 2001, 63 (05) :523111-523115
[9]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[10]   Unconditional quantum teleportation [J].
Furusawa, A ;
Sorensen, JL ;
Braunstein, SL ;
Fuchs, CA ;
Kimble, HJ ;
Polzik, ES .
SCIENCE, 1998, 282 (5389) :706-709