Dynamic Land Cover Mapping of Urbanized Cities with Landsat 8 Multi-temporal Images: Comparative Evaluation of Classification Algorithms and Dimension Reduction Methods

被引:11
作者
Alganci, Ugur [1 ]
机构
[1] Istanbul Tech Univ, Geomat Engn Dept, TR-34467 Sariyer, Turkey
来源
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION | 2019年 / 8卷 / 03期
关键词
land cover mapping; support vector machine classification; object-based decision tree classification; principal component analysis; built-up index; OBJECT-ORIENTED CLASSIFICATION; SUPPORT VECTOR MACHINES; BUILT-UP INDEX; METROPOLITAN-AREA; CROP TYPES; ISTANBUL; GROWTH; SEGMENTATION; MULTIRESOLUTION; FEATURES;
D O I
10.3390/ijgi8030139
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Uncontrolled and continuous urbanization is an important problem in the metropolitan cities of developing countries. Urbanization progress that occurs due to population expansion and migration results in important changes in the land cover characteristics of a city. These changes mostly affect natural habitats and the ecosystem in a negative manner. Hence, urbanization-related changes should be monitored regularly, and land cover maps should be updated to reflect the current situation. This research presents a comparative evaluation of two classification algorithms, pixel-based support vector machine (SVM) classification and decision-tree-oriented geographic object-based image analysis (GEOBIA) classification, in producing a dynamic land cover map of the Istanbul metropolitan city in Turkey between 2013 and 2017 using Landsat 8 Operational Land Imager (OLI) multi-temporal satellite images. Additionally, the efficiencies of the two data dimension reduction methods are evaluated as part of this research. For dimension reduction, built-up index (BUI) and principal component analysis (PCA) data were calculated for five images during the mentioned period, and the classification algorithms were applied on data stacks for each dimension reduction method. The classification results indicate that the GEOBIA classification of the BUI data set provided the highest accuracy, with a 91.60% overall accuracy and 0.91 kappa value. This combination was followed by the GEOBIA classification of the PCA data set, which highlights the overall efficiency of the GEOBIA over the SVM method. On the other hand, the BUI data set provided more reliable and consistent results for urban expansion classes due to representing physical responses of the surface when compared to the data set of the PCA, which is a spectral transformation method.
引用
收藏
页数:22
相关论文
共 76 条
  • [1] Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data
    Abd El-Kawy, O. R.
    Rod, J. K.
    Ismail, H. A.
    Suliman, A. S.
    [J]. APPLIED GEOGRAPHY, 2011, 31 (02) : 483 - 494
  • [2] Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression
    Adam, Elhadi
    Mutanga, Onisimo
    Abdel-Rahman, Elfatih M.
    Ismail, Riyad
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (02) : 693 - 714
  • [3] Parcel-Level Identification of Crop Types Using Different Classification Algorithms and Multi-Resolution Imagery in Southeastern Turkey
    Alganci, Ugur
    Sertel, Elif
    Ozdogan, Mutlu
    Ormeci, Cankut
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2013, 79 (11) : 1053 - 1065
  • [4] Anderson JR, 1976, 964 US GEOL SURV
  • [5] [Anonymous], 2002, Principal components analysis
  • [6] [Anonymous], 2000, P AGIS
  • [7] [Anonymous], 2006, REMOTE SENSING DIGIT
  • [8] [Anonymous], 2003, WILEY HOBOKEN
  • [9] Barnsley MJ, 1996, PHOTOGRAMM ENG REM S, V62, P949
  • [10] The Spectral Response of the Landsat-8 Operational Land Imager
    Barsi, Julia A.
    Lee, Kenton
    Kvaran, Geir
    Markham, Brian L.
    Pedelty, Jeffrey A.
    [J]. REMOTE SENSING, 2014, 6 (10): : 10232 - 10251