Deep Reinforcement Learning-Guided Task Reverse Offloading in Vehicular Edge Computing

被引:3
|
作者
Gu, Anqi [1 ]
Wu, Huaming [1 ]
Tang, Huijun [1 ]
Tang, Chaogang [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
来源
2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022) | 2022年
基金
中国国家自然科学基金;
关键词
Internet of Vehicle; Vehicular Edge Computing; Reverse Offloading; Deep Reinforcement Learning; ALLOCATION; INTERNET;
D O I
10.1109/GLOBECOM48099.2022.10001474
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development of Vehicular Edge Computing (VEC) provides great support for Collaborative Vehicle Infrastructure System (CVIS) and promotes the safety of autonomous driving. In CVIS, crowd-sensing data will be uploaded to the VEC server to fuse the data and generate tasks. However, when there are too many vehicles, it brings huge challenges for VEC to make proper decisions according to the information from vehicles and roadside infrastructure. In this paper, a reverse offloading framework is constructed, which comprehensively considers the relationship balance between task completion delay and the energy consumption of User Vehicle (UV). Furthermore, in order to minimize the overall system consumption, we establish an adaptive optimal reverse offloading strategy based on Deep Q-Network (DQN). Simulation results demonstrate that the proposed algorithm can effectively reduce the energy consumption and task delay, when compared with the full local and fixed offloading schemes.
引用
收藏
页码:2200 / 2205
页数:6
相关论文
共 50 条
  • [41] Cloud-Edge-End Collaborative Task Offloading in Vehicular Edge Networks: A Multilayer Deep Reinforcement Learning Approach
    Wu, Jiaqi
    Tang, Ming
    Jiang, Changkun
    Gao, Lin
    Cao, Bin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (22): : 36272 - 36290
  • [42] Reverse Offloading for Latency Minimization in Vehicular Edge Computing
    Feng, Weiyang
    Yang, Shuzhong
    Gao, Yuan
    Zhang, Ning
    Ning, Ruirui
    Lin, Siyu
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [43] Latency Minimization of Reverse Offloading in Vehicular Edge Computing
    Feng, Weiyang
    Zhang, Ning
    Li, Shichao
    Lin, Siyu
    Ning, Ruirui
    Yang, Shuzhong
    Gao, Yuan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (05) : 5343 - 5357
  • [44] A collaborative computation and dependency-aware task offloading method for vehicular edge computing: a reinforcement learning approach
    Guozhi Liu
    Fei Dai
    Bi Huang
    Zhenping Qiang
    Shuai Wang
    Lecheng Li
    Journal of Cloud Computing, 11
  • [45] Client Selection for Federated Learning in Vehicular Edge Computing: A Deep Reinforcement Learning Approach
    Moon, Sungwon
    Lim, Yujin
    IEEE ACCESS, 2024, 12 : 131337 - 131348
  • [46] Deep-Reinforcement-Learning-Based Distributed Computation Offloading in Vehicular Edge Computing Networks
    Geng, Liwei
    Zhao, Hongbo
    Wang, Jiayue
    Kaushik, Aryan
    Yuan, Shuai
    Feng, Wenquan
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12416 - 12433
  • [47] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Degan Zhang
    Lixiang Cao
    Haoli Zhu
    Ting Zhang
    Jinyu Du
    Kaiwen Jiang
    Cluster Computing, 2022, 25 : 1175 - 1187
  • [48] Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
    Xiaohu Gao
    Mei Choo Ang
    Sara A. Althubiti
    Journal of Grid Computing, 2023, 21
  • [49] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Zhang, Degan
    Cao, Lixiang
    Zhu, Haoli
    Zhang, Ting
    Du, Jinyu
    Jiang, Kaiwen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 1175 - 1187
  • [50] Deep Multiagent Reinforcement Learning for Task Offloading and Resource Allocation in Satellite Edge Computing
    Jia, Min
    Zhang, Liang
    Wu, Jian
    Guo, Qing
    Zhang, Guowei
    Gu, Xuemai
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (04): : 3832 - 3845