Deep Reinforcement Learning-Guided Task Reverse Offloading in Vehicular Edge Computing

被引:3
|
作者
Gu, Anqi [1 ]
Wu, Huaming [1 ]
Tang, Huijun [1 ]
Tang, Chaogang [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of Vehicle; Vehicular Edge Computing; Reverse Offloading; Deep Reinforcement Learning; ALLOCATION; INTERNET;
D O I
10.1109/GLOBECOM48099.2022.10001474
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rapid development of Vehicular Edge Computing (VEC) provides great support for Collaborative Vehicle Infrastructure System (CVIS) and promotes the safety of autonomous driving. In CVIS, crowd-sensing data will be uploaded to the VEC server to fuse the data and generate tasks. However, when there are too many vehicles, it brings huge challenges for VEC to make proper decisions according to the information from vehicles and roadside infrastructure. In this paper, a reverse offloading framework is constructed, which comprehensively considers the relationship balance between task completion delay and the energy consumption of User Vehicle (UV). Furthermore, in order to minimize the overall system consumption, we establish an adaptive optimal reverse offloading strategy based on Deep Q-Network (DQN). Simulation results demonstrate that the proposed algorithm can effectively reduce the energy consumption and task delay, when compared with the full local and fixed offloading schemes.
引用
收藏
页码:2200 / 2205
页数:6
相关论文
共 50 条
  • [21] Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
    Hu X.
    Huang Y.
    PeerJ Computer Science, 2022, 8
  • [22] Deep Learning-Based Task Discrimination Offloading in Vehicular Edge Computing
    Zhang J.
    Qi K.
    Zhang Q.
    Sun L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (01): : 29 - 39
  • [23] Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme
    Jie Zhang
    Hongzhi Guo
    Jiajia Liu
    Mobile Networks and Applications, 2020, 25 : 1736 - 1745
  • [24] Trusted Task Offloading in Vehicular Edge Computing Networks: A Reinforcement Learning Based Solution
    Zhang, Lushi
    Guo, Hongzhi
    Zhou, Xiaoyi
    Liu, Jiajia
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 6711 - 6716
  • [25] An RSU-crossed dependent task offloading scheme for vehicular edge computing based on deep reinforcement learning
    Bi, Xiang
    Shi, Jianing
    Zhang, Benhong
    Lyu, Zengwei
    Huang, Lingjie
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2023, 41 (04) : 244 - 256
  • [26] Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme
    Zhang, Jie
    Guo, Hongzhi
    Liu, Jiajia
    MOBILE NETWORKS & APPLICATIONS, 2020, 25 (05): : 1736 - 1745
  • [27] Mean-field reinforcement learning for decentralized task offloading in vehicular edge computing
    Shen, Si
    Shen, Guojiang
    Yang, Xiaoxue
    Xia, Feng
    Du, Hao
    Kong, Xiangjie
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 146
  • [28] Lyapunov-guided Deep Reinforcement Learning for service caching and task offloading in Mobile Edge Computing
    Li, Nianxin
    Zhai, Linbo
    Ma, Zeyao
    Zhu, Xiumin
    Li, Yumei
    COMPUTER NETWORKS, 2024, 250
  • [29] Deep Reinforcement Learning for Task Offloading in Edge Computing Assisted Power IoT
    Hu, Jiangyi
    Li, Yang
    Zhao, Gaofeng
    Xu, Bo
    Ni, Yiyang
    Zhao, Haitao
    IEEE ACCESS, 2021, 9 : 93892 - 93901
  • [30] Task graph offloading via deep reinforcement learning in mobile edge computing
    Liu, Jiagang
    Mi, Yun
    Zhang, Xinyu
    Li, Xiaocui
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 545 - 555