Zero-Hopf bifurcation in a 3D jerk system

被引:20
作者
Braun, Francisco [1 ]
Mereu, Ana C. [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Fis Quim & Matemat, BR-18052780 Sorocaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Zero-Hopf Bifurcation; Periodic solutions; Averaging theory;
D O I
10.1016/j.nonrwa.2020.103245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let the three-dimensional differential system defined by the jerk equation (x) over dot = a(x) over dot +x(x) over dot(2) -x(3)-bx+c(x) over dot, with a, b, c is an element of R. When a = b = 0 and c < 0 the equilibrium point localized at the origin of coordinates is a zero-Hopf equilibrium. We analyse the zero-Hopf bifurcation occurring at this singular point after persuading a quadratic perturbation of the coefficients. Particularly, by using averaging theory of second order, we prove that up to three periodic orbits born as the parameter of the perturbation tends to zero. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 2004, PHYS REV E, DOI DOI 10.1103/PhysRevE.69.022901
[2]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[3]   Hopf and zero-Hopf bifurcations in the Hindmarsh-Rose system [J].
Buzzi, Claudio ;
Llibre, Jaume ;
Medrado, Joao .
NONLINEAR DYNAMICS, 2016, 83 (03) :1549-1556
[4]   Persistence of periodic solutions for higher order perturbed differential systems via Lyapunov-Schmidt reduction [J].
Candido, Murilo R. ;
Llibre, Jaume ;
Novaes, Douglas D. .
NONLINEARITY, 2017, 30 (09) :3560-3586
[5]  
Castellanos V., 2013, J. Appl. Math. Phys, V1, P31
[6]  
CHUA LO, 1992, AEU-INT J ELECTRON C, V46, P250
[7]   Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows [J].
Eichhorn, R ;
Linz, SJ ;
Hänggi, P .
PHYSICAL REVIEW E, 1998, 58 (06) :7151-7164
[8]   Zero-Hopf bifurcation in a Chua system [J].
Euzebio, Rodrigo D. ;
Llibre, Jaume .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :31-40
[9]   Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type [J].
Ginoux, Jean-Marc ;
Llibre, Jaume .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) :7858-7866
[10]  
GUCKENHEIMER J, 1981, LECT NOTES MATH, V898, P99, DOI DOI 10.1007/BFB0091910