A Monodisperse Rh2P-Based Electrocatalyst for Highly Efficient and pH-Universal Hydrogen Evolution Reaction

被引:191
作者
Yang, Fulin [1 ,2 ]
Zhao, Yuanmeng [1 ,2 ]
Du, Yeshuang [1 ,2 ]
Chen, Yongting [1 ,2 ]
Cheng, Gongzhen [1 ,2 ]
Chen, Shengli [1 ,2 ]
Luo, Wei [1 ,2 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Hubei, Peoples R China
[2] Hubei Key Lab Electrochem Power Sources Wuhan, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
DFT; hydrogen evolution reaction; monodisperse Rh2P; pH-universal; transition metal phosphides; BIFUNCTIONAL ELECTROCATALYSTS; NICKEL PHOSPHIDE; LOW-COST; CATALYSTS; DESIGN; CARBON; ENERGY; COPPER; ELECTROLYSIS; MOLYBDENUM;
D O I
10.1002/aenm.201703489
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The search for Pt-free electrocatalysts exceeding pH-universal hydrogen evolution reaction (HER) activities when compared to the state-of-the-art commercial Pt/C is highly desirable for the development of renewable energy conversion systems but still remains a huge challenge. Here a colloidal synthesis of monodisperse Rh2P nanoparticles with an average size of 2.8 nm and their superior catalytic activities for pH-universal HER are reported. Significantly, the Rh2P catalyst displays remarkable HER performance with overpotentials of 14, 30, and 38 mV to achieve 10 mA cm(-2) in 0.5 m H2SO4, 1.0 m KOH, and 1.0 M phosphate-buffered saline, respectively, exceeding almost all the documented electrocatalysts, including the commercial 20 wt% Pt/C. Density functional theory calculations reveal that the introduction of P into Rh can weaken the H adsorption strength of Rh2P to nearly zero, beneficial for boosting HER performance.
引用
收藏
页数:7
相关论文
共 58 条
[1]   The kinetics and mechanisms of simulated British Magnox waste glass dissolution as a function of pH, silicic acid activity and time in low temperature aqueous systems [J].
Abraitis, PK ;
Livens, FR ;
Monteith, JE ;
Small, JS ;
Trivedi, DP ;
Vaughan, DJ ;
Wogelius, RA .
APPLIED GEOCHEMISTRY, 2000, 15 (09) :1399-1416
[2]   Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces [J].
Anantharaj, Sengeni ;
Karthick, Kannimuthu ;
Venkatesh, Murugadoss ;
Simha, Tangella V. S. V. ;
Salunke, Ashish S. ;
Ma, Lian ;
Liang, Hong ;
Kundu, Subrata .
NANO ENERGY, 2017, 39 :30-43
[3]   Atomically Dispersed Copper-Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction [J].
Chao, Tingting ;
Luo, Xuan ;
Chen, Wenxing ;
Jiang, Bin ;
Ge, Jingjie ;
Lin, Yue ;
Wu, Geng ;
Wang, Xiaoqian ;
Hu, Yanmin ;
Zhuang, Zhongbin ;
Wu, Yuen ;
Hong, Xun ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) :16047-16051
[4]   Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution [J].
Chen, Mingxing ;
Qi, Jing ;
Zhang, Wei ;
Cao, Rui .
CHEMICAL COMMUNICATIONS, 2017, 53 (40) :5507-5510
[5]   Tuning the confinement space of N-carbon shell-coated ruthenium nanoparticles: highly efficient electrocatalysts for hydrogen evolution reaction [J].
Chen, Xianlang ;
Zheng, Jian ;
Zhong, Xing ;
Jin, Yihan ;
Zhuang, Guilin ;
Li, Xiaonian ;
Deng, Shengwei ;
Wang, Jian-guo .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (21) :4964-4970
[6]   Rh-MoS2 Nanocomposite Catalysts with Pt-Like Activity for Hydrogen Evolution Reaction [J].
Cheng, Yafei ;
Lu, Shunkai ;
Liao, Fan ;
Liu, Liangbin ;
Li, Yanqing ;
Shao, Mingwang .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (23)
[7]   Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J].
Conway, BE ;
Tilak, BV .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3571-3594
[8]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[9]   Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis [J].
Dionigi, Fabio ;
Reier, Tobias ;
Pawolek, Zarina ;
Gliech, Manuel ;
Strasser, Peter .
CHEMSUSCHEM, 2016, 9 (09) :962-972
[10]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337