An Improved Algorithm for TV-L1 Optical Flow

被引:278
作者
Wedel, Andreas [1 ,3 ]
Pock, Thomas [2 ]
Zach, Christopher [4 ]
Bischof, Horst [2 ]
Cremers, Daniel [1 ]
机构
[1] Univ Bonn, Comp Vis Grp, D-5300 Bonn, Germany
[2] Graz Univ Technol, Inst Comp Graph & Vis, Graz, Austria
[3] Daimler Grp Res & Adv Engn, Sindelfingen, Germany
[4] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC USA
来源
STATISTICAL AND GEOMETRICAL APPROACHES TO VISUAL MOTION ANALYSIS | 2009年 / 5604卷
关键词
COMPUTATION;
D O I
10.1007/978-3-642-03061-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A look at the Middlebury optical flow benchmark [5] reveals that nowadays variational methods yield the most accurate optical flow fields between two image frames. In this work we propose an improvement variant of the original duality based TV-L-1 optical flow algorithm in [31] and provide implementation details. This formulation can preserve discontinuities in the flow field by employing total variation (TV) regularization. Furthermore, it offers robustness against Outliers by applying the robust L-1 norm in the data fidelity term. Our contributions are as follows. First, we propose to perform a structure-texture decomposition of the input images to get rid of violations in the optical flow constraint due to illumination changes. Second, we propose to integrate a median filter into the numerical scheme to further increase the robustness to sampling artefacts in the image data. We experimentally show that very precise and robust estimation of optical flow can be achieved with a variational approach in real-time. The numerical scheme and the implementation are described in a detailed way, which enables reimplementation of this high-end method.
引用
收藏
页码:23 / +
页数:3
相关论文
共 31 条
[1]  
Alvarez L, 1999, LECT NOTES COMPUT SC, V1682, P235
[2]   A COMPUTATIONAL FRAMEWORK AND AN ALGORITHM FOR THE MEASUREMENT OF VISUAL-MOTION [J].
ANANDAN, P .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1989, 2 (03) :283-310
[3]  
[Anonymous], J MATH IMAGING VISIO
[4]   Computing optical flow via variational techniques [J].
Aubert, G ;
Deriche, R ;
Kornprobst, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) :156-182
[5]   Structure-texture image decomposition - Modeling, algorithms, and parameter selection [J].
Aujol, JF ;
Gilboa, G ;
Chan, T ;
Osher, S .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 67 (01) :111-136
[6]  
BAKER S, 1993, ICCV 1993, P1
[7]  
Birchfield S., 1997, DERIVATION KANADE LU
[8]  
Black M.J., 1993, International Conference on Computer Vision (ICCV), P231
[9]  
Brox T., 2004, LNCS, V3024, P25, DOI DOI 10.1007/978-3-540-24673-2
[10]   Variational optical flow computation in real time [J].
Bruhn, A ;
Weickert, J ;
Feddern, C ;
Kohlberger, T ;
Schnörr, C .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (05) :608-615