Oscillation for second-order half-linear delay damped dynamic equations on time scales

被引:1
作者
Li, Jimeng [1 ]
Yang, Jiashan [2 ]
机构
[1] Shaoyang Univ, Sch Sci, Shaoyang, Peoples R China
[2] Wuzhou Univ, Sch Data Sci & Software Engn, Wuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Oscillation; Time scales; Functional dynamic equations; Riccati substitutions; Variable delay; CRITERIA;
D O I
10.1186/s13662-019-2136-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate oscillation of second-order half-linear variable delay damped dynamic equations a(t) x (t) .-1 x (t) + b(t) x (t) .-1 x (t) + p(t) x(d(t)) .-1 x(d(t)) = 0 on a time scale T. By using the generalized Riccati transformation and the inequality technique, we establish some new oscillation criteria for the equations under the condition 8 t0 a-1(s) e-b/a(s, t0) 1/. s <8. These results deal with some cases not covered by existing results in the literature.
引用
收藏
页数:12
相关论文
共 22 条
  • [1] Oscillation criteria for second-order dynamic equations on time scales
    Agarwal, Ravi P.
    Bohner, Martin
    Li, Tongxing
    Zhang, Chenghui
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 31 : 34 - 40
  • [2] Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
  • [3] Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient
    Bohner, Martin
    Li, Tongxing
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 37 : 72 - 76
  • [4] Oscillation criteria for second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients on time scales
    Deng XunHuan
    Wang QiRu
    Zhou Zhan
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (01) : 113 - 132
  • [5] Oscillation criteria for nonlinear damped dynamic equations on time scales
    Erbe, Lynn
    Hassan, Taher S.
    Peterson, Allan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 343 - 357
  • [6] Remarks on the paper [Appl. Math. Comput. 207 (2009) 388-396]
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Sun, Yibing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (11) : 3998 - 4007
  • [7] Oscillation for Second-Order Nonlinear Delay Dynamic Equations on Time Scales
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Zhang, Chenghui
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [8] Li T.X, 2018, J NONLINEAR SCI APP, V11, P274, DOI [10.22436/jnsa.011.02.09, DOI 10.22436/jnsa.011.02.09]
  • [9] A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales
    Li, Tongxing
    Saker, S. H.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (12) : 4185 - 4188
  • [10] Oscillation of second-order nonlinear neutral delay dynamic equations on time scales
    Saker, SH
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 187 (02) : 123 - 141