Anderson localization in correlated fermionic mixtures

被引:5
作者
Fialko, O. [1 ]
Ziegler, K. [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
关键词
FALICOV-KIMBALL MODEL; SCALING THEORY; MOBILITY EDGE; ATOMS; TRANSITION; DIFFUSION; ELECTRONS; DISORDER; LATTICES; ABSENCE;
D O I
10.1209/0295-5075/85/60003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A mixture of two fermionic species with different masses is studied in an optical lattice. The heavy fermions are subject only to thermal fluctuations, the light fermions also to quantum fluctuations. We derive the Ising-like distribution for the heavy atoms and study the localization properties of the light fermions numerically by a transfer-matrix method. In a two-dimensional system one-parameter scaling of the localization length is found with a transition from delocalized states at low temperatures to localized states at high temperature. The critical exponent of the localization length is v approximate to 0.88. Copyright (C) EPLA, 2009
引用
收藏
页数:5
相关论文
共 24 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]   Quantum phases in mixtures of Fermionic atoms [J].
Ates, C ;
Ziegler, K .
PHYSICAL REVIEW A, 2005, 71 (06)
[4]   Direct observation of Anderson localization of matter waves in a controlled disorder [J].
Billy, Juliette ;
Josse, Vincent ;
Zuo, Zhanchun ;
Bernard, Alain ;
Hambrecht, Ben ;
Lugan, Pierre ;
Clement, David ;
Sanchez-Palencia, Laurent ;
Bouyer, Philippe ;
Aspect, Alain .
NATURE, 2008, 453 (7197) :891-894
[5]   Correlated bosons on a lattice: Dynamical mean-field theory for Bose-Einstein condensed and normal phases [J].
Byczuk, Krzysztof ;
Vollhardt, Dieter .
PHYSICAL REVIEW B, 2008, 77 (23)
[6]   SIMPLE MODEL FOR SEMICONDUCTOR-METAL TRANSITIONS - SMB6 AND TRANSITION-METAL OXIDES [J].
FALICOV, LM ;
KIMBALL, JC .
PHYSICAL REVIEW LETTERS, 1969, 22 (19) :997-&
[7]   Ground-state properties of fermionic mixtures with mass imbalance in optical lattices [J].
Farkasovsky, P. .
EPL, 2008, 84 (03)
[8]  
Farkasovsky P, 1997, Z PHYS B CON MAT, V102, P91
[9]   Exact dynamical mean-field theory of the Falicov-Kimball model [J].
Freericks, JK ;
Zlatic, V .
REVIEWS OF MODERN PHYSICS, 2003, 75 (04) :1333-1382
[10]   Matter-wave localization in disordered cold atom lattices [J].
Gavish, U ;
Castin, Y .
PHYSICAL REVIEW LETTERS, 2005, 95 (02)