Thermal conductance imaging of graphene contacts

被引:83
作者
Yang, Jia [1 ]
Ziade, Elbara [1 ]
Maragliano, Carlo [2 ]
Crowder, Robert [1 ]
Wang, Xuanye [3 ]
Stefancich, Marco [2 ]
Chiesa, Matteo [2 ]
Swan, Anna K. [3 ]
Schmidt, Aaron J. [1 ]
机构
[1] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[2] Masdar Inst Sci & Technol, Inst Ctr Energy, Abu Dhabi, U Arab Emirates
[3] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
关键词
TRANSPORT; CONDUCTIVITY; SCATTERING; FILMS;
D O I
10.1063/1.4889928
中图分类号
O59 [应用物理学];
学科分类号
摘要
Suspended graphene has the highest measured thermal conductivity of any material at room temperature. However, when graphene is supported by a substrate or encased between two materials, basal-plane heat transfer is suppressed by phonon interactions at the interfaces. We have used frequency domain thermoreflectance to create thermal conductance maps of graphene contacts, obtaining simultaneous measurements of the basal-plane thermal conductivity and cross-plane thermal boundary conductance for 1-7 graphitic layers encased between titanium and silicon dioxide. We find that the basal-plane thermal conductivity is similar to that of graphene supported on silicon dioxide. Our results have implications for heat transfer in two-dimensional material systems, and are relevant for applications such as graphene transistors and other nanoelectronic devices. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 31 条
[1]  
Ashcroft N., 2011, Solid State Physics
[2]   Scaling of High-Field Transport and Localized Heating in Graphene Transistors [J].
Bae, Myung-Ho ;
Islam, Sharnali ;
Dorgan, Vincent E. ;
Pop, Eric .
ACS NANO, 2011, 5 (10) :7936-7944
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[5]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[6]   Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film [J].
Chien, Heng-Chieh ;
Yao, Da-Jeng ;
Huang, Mei-Jiau ;
Chang, Tien-Yao .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (05)
[7]   High-Fidelity Conformation of Graphene to SiO2 Topographic Features [J].
Cullen, W. G. ;
Yamamoto, M. ;
Burson, K. M. ;
Chen, J. H. ;
Jang, C. ;
Li, L. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[8]   Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires [J].
Dames, C ;
Chen, G .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (02) :682-693
[9]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[10]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]