On monomial codes in modular group algebras

被引:2
作者
Hannusch, Carolin [1 ]
机构
[1] Univ Debrecen, Inst Math, Debrecen, Hungary
关键词
Error-correcting codes; Modular group algebras; Monomial codes; Automorphism group;
D O I
10.1016/j.disc.2016.12.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number and K be the finite field of p elements, i.e. K = GF(p). Further let G be an elementary abelian p-group of order pm. Then the group algebra K[G] is modular. We consider K[G] as an ambient space and the ideals of K[G] as linear codes. A basis of a linear space is called visible, if there exists a member of the basis with the minimum (Hamming) weight of the space. The group algebra approach enables us to find some linear codes with a visible basis in the Jacobson radical of K[G]. These codes can be generated by "monomials" (Drensky & Lakatos, 1989). For p > 2, some of our monomial codes have better parameters than the Generalized Reed-Muller codes. In the last part of the paper we determine the automorphism groups of some of the introduced codes. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:957 / 962
页数:6
相关论文
共 11 条
[1]  
Berman S.D., 1967, Cybernetics, V1, P25
[2]  
CHARPIN P, 1982, CR ACAD SCI I-MATH, V295, P313
[3]  
DRENSKY V, 1989, LECT NOTES COMPUT SC, V357, P181
[4]  
Hannusch C, 2016, ALGEBRA DISCRET MATH, V21, P59
[5]  
Jennings SA, 1941, T AM MATH SOC, V50, P175
[6]   NEW GENERALIZATIONS OF REED-MULLER CODES .I. PRIMITIVE CODES [J].
KASAMI, T ;
LIN, S ;
PETERSON, WW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (02) :189-+
[7]  
Landrock P., 1992, Designs, Codes and Cryptography, V2, P273, DOI 10.1007/BF00141972
[8]  
Martinez-Moro E., 2015, J ALGEBRA COMBIN DIS, V2
[9]  
Muller D. E., 1954, Transactions of the IRE professional group on electronic computers, V3, P6, DOI 10.1109/IREPGELC.1954.6499441
[10]  
Pless V., 1972, Discrete Mathematics, V3, P209, DOI 10.1016/0012-365X(72)90034-9