Testing predictor contributions in sufficient dimension reduction

被引:123
作者
Cook, RD [1 ]
机构
[1] Univ Minnesota, Sch Stat, St Paul, MN 55108 USA
关键词
central subspace; nonparametric regression; sliced inverse regression;
D O I
10.1214/009053604000000292
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop tests of the hypothesis of no effect for selected predictors in regression, without assuming a model for the conditional distribution of the response given the predictors. Predictor effects need not be limited to the mean function and smoothing is not required. The general approach is based on sufficient dimension reduction, the idea being to replace the predictor vector with a lower-dimensional version without loss of information on the regression. Methodology using sliced inverse regression is developed in detail.
引用
收藏
页码:1062 / 1092
页数:31
相关论文
共 31 条
[1]  
[Anonymous], 1989, SELECTED PAPERS C R
[2]   Extending sliced inverse regression: the weighted chi-squared test [J].
Bura, E ;
Cook, RD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :996-1003
[3]   Estimating the structural dimension of regressions via parametric inverse regression [J].
Bura, E ;
Cook, RD .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :393-410
[4]  
Chen CH, 1998, STAT SINICA, V8, P289
[5]   Sufficient dimension reduction in regressions with categorical predictors [J].
Chiaromonte, F ;
Cook, RD ;
Li, B .
ANNALS OF STATISTICS, 2002, 30 (02) :475-497
[6]  
Cook D.R., 1999, APPL REGRESSION INCL
[7]  
COOK R. D., 1998, WILEY PROB STAT
[8]   REWEIGHTING TO ACHIEVE ELLIPTICALLY CONTOURED COVARIATES IN REGRESSION [J].
COOK, RD ;
NACHTSHEIM, CJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) :592-599
[9]   Identifying regression outliers and mixtures graphically [J].
Cook, RD ;
Critchley, F .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :781-794
[10]   ON THE INTERPRETATION OF REGRESSION PLOTS [J].
COOK, RD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (425) :177-189