The Golod property of powers of the maximal ideal of a local ring

被引:3
作者
Christensen, Lars Winther [1 ]
Veliche, Oana [2 ]
机构
[1] Texas Tech Univ, Lubbock, TX 79409 USA
[2] Northeastern Univ, Boston, MA 02115 USA
关键词
Artinian Gorenstein ring; Exact zero-divisor; Golod ring; Koszul ring; POINCARE-SERIES; FREE RESOLUTIONS; GORENSTEIN RING; MODULES; ALGEBRAS; SOCLE;
D O I
10.1007/s00013-018-1152-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify minimal cases in which a power of the maximal ideal of a local ring R is not Golod, i.e. the quotient ring is not Golod. Complementary to a 2014 result by Rossi and Aega, we prove that for a generic artinian Gorenstein local ring with , the quotient is not Golod. This is provided that is minimally generated by at least 3 elements. Indeed, we show that if is 2-generated, then every power is Golod.
引用
收藏
页码:549 / 562
页数:14
相关论文
共 23 条