Talbot holographic illumination nonscanning (THIN) fluorescence microscopy

被引:21
作者
Luo, Yuan [1 ,2 ]
Singh, Vijay Raj [3 ]
Bhattacharya, Dipanjan [3 ,4 ,5 ]
Yew, Elijah Y. S. [3 ,6 ]
Tsai, Jui-Chang [1 ]
Yu, Sung-Liang [7 ]
Chen, Hsi-Hsun [1 ,2 ]
Wong, Jau-Min [8 ]
Matsudaira, Paul [3 ,4 ,5 ]
So, Peter T. C. [3 ,6 ,9 ]
Barbastathis, George [3 ,6 ]
机构
[1] Natl Taiwan Univ, Coll Med, Ctr Optoelect Biomed, Taipei 10051, Taiwan
[2] Natl Taiwan Univ, Mol Imaging Ctr, Taipei 10055, Taiwan
[3] Singapore MIT Alliance Res & Technol SMART Ctr, Singapore 138602, Singapore
[4] Natl Univ Singapore, CBIS, Singapore 117546, Singapore
[5] Natl Univ Singapore, MBI, Singapore 117411, Singapore
[6] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[7] Natl Taiwan Univ, Coll Med, Dept Clin Lab Sci & Med Biotechnol, Taipei 10055, Taiwan
[8] Natl Taiwan Univ Hosp, Dept Internal Med, Taipei 10048, Taiwan
[9] MIT, Dept Biomed Engn, Cambridge, MA 02139 USA
基金
美国国家卫生研究院; 新加坡国家研究基金会;
关键词
3D wide field Microscopy; optical sectioning; holographic Bragg filters; Talbot effect; STRUCTURED-ILLUMINATION; IMAGE-FORMATION; PQ-PMMA; LIGHT; CONTRAST;
D O I
10.1002/lpor.201400053
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical sectioning techniques offer the ability to acquire three-dimensional information from various organ tissues by discriminating between the desired in-focus and out-of-focus (background) signals. Alternative techniques to confocal, such as active structured illumination, exist for fast optically sectioned images, but they require individual axial planes to be imaged consecutively. In this article, an imaging technique (THIN), by utilizing active Talbot illumination in 3D and multiplexed holographic Bragg filters for depth discrimination, is demonstrated for imaging in vivo 3D biopsy without mechanical or optical axial scanning.
引用
收藏
页码:L71 / L75
页数:5
相关论文
共 32 条
[1]  
Abrahamsson S, 2013, NAT METHODS, V10, P60, DOI [10.1038/nmeth.2277, 10.1038/NMETH.2277]
[2]  
[Anonymous], 2008, Introduction to Fourier optics
[3]  
Barbastathis G, 2000, SPRINGER SERIES OPTI, V76, P21
[4]   Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging [J].
Bhattacharya, Dipanjan ;
Singh, Vijay Raj ;
Zhi, Chen ;
So, Peter T. C. ;
Matsudaira, Paul ;
Barbastathis, George .
OPTICS EXPRESS, 2012, 20 (25) :27337-27347
[5]   Holographic three-dimensional telepresence using large-area photorefractive polymer [J].
Blanche, P-A ;
Bablumian, A. ;
Voorakaranam, R. ;
Christenson, C. ;
Lin, W. ;
Gu, T. ;
Flores, D. ;
Wang, P. ;
Hsieh, W-Y ;
Kathaperumal, M. ;
Rachwal, B. ;
Siddiqui, O. ;
Thomas, J. ;
Norwood, R. A. ;
Yamamoto, M. ;
Peyghambarian, N. .
NATURE, 2010, 468 (7320) :80-83
[6]   Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination [J].
Choi, Heejin ;
Yew, Elijah Y. S. ;
Hallacoglu, Bertan ;
Fantini, Sergio ;
Sheppard, Colin J. R. ;
So, Peter T. C. .
BIOMEDICAL OPTICS EXPRESS, 2013, 4 (07) :995-1005
[7]   Optical sectioning microscopy [J].
Conchello, JA ;
Lichtman, JW .
NATURE METHODS, 2005, 2 (12) :920-931
[8]   A NEW MICROSCOPIC PRINCIPLE [J].
GABOR, D .
NATURE, 1948, 161 (4098) :777-778
[9]   Digital in-line holographic microscopy [J].
Garcia-Sucerquia, J ;
Xu, WB ;
Jericho, SK ;
Klages, P ;
Jericho, MH ;
Kreuzer, HJ .
APPLIED OPTICS, 2006, 45 (05) :836-850
[10]   Aperiodic volume optics [J].
Gerke, Tim D. ;
Piestun, Rafael .
NATURE PHOTONICS, 2010, 4 (03) :188-193