Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory

被引:125
作者
Bhatt, Mahesh Datt [1 ,2 ]
Geaney, Hugh [1 ,2 ]
Nolan, Michael [2 ]
O'Dwyer, Colm [1 ,2 ]
机构
[1] Univ Coll Cork, Dept Chem, Cork, Ireland
[2] Tyndall Natl Inst, Cork, Ireland
关键词
LITHIUM-AIR BATTERIES; EFFICIENT BIFUNCTIONAL CATALYST; REDUCED GRAPHENE OXIDE; TRANSMISSION ELECTRON-MICROSCOPY; PERFORMANCE CATHODE CATALYST; OXYGEN REDUCTION REACTION; HONEYCOMB-LIKE CARBON; LI-AIR; HIGH-CAPACITY; IN-SITU;
D O I
10.1039/c4cp01309c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable Li-air (henceforth referred to as Li-O-2) batteries provide theoretical capacities that are ten times higher than that of current Li-ion batteries, which could enable the driving range of an electric vehicle to be comparable to that of gasoline vehicles. These high energy densities in Li-O-2 batteries result from the atypical battery architecture which consists of an air (O-2) cathode and a pure lithium metal anode. However, hurdles to their widespread use abound with issues at the cathode (relating to electrocatalysis and cathode decomposition), lithium metal anode (high reactivity towards moisture) and due to electrolyte decomposition. This review focuses on the key scientific challenges in the development of rechargeable non-aqueous Li-O-2 batteries from both experimental and theoretical findings. This dual approach allows insight into future research directions to be provided and highlights the importance of combining theoretical and experimental approaches in the optimization of Li-O-2 battery systems.
引用
收藏
页码:12093 / 12130
页数:38
相关论文
共 378 条
[11]   THE ELECTROCHEMISTRY OF NOBLE-METAL ELECTRODES IN APROTIC ORGANIC-SOLVENTS CONTAINING LITHIUM-SALTS [J].
AURBACH, D ;
DAROUX, M ;
FAGUY, P ;
YEAGER, E .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1991, 297 (01) :225-244
[12]   A critical review on lithium-air battery electrolytes [J].
Balaish, Moran ;
Kraytsberg, Alexander ;
Ein-Eli, Yair .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (07) :2801-2822
[13]   High-Capacity Lithium-Air Cathodes [J].
Beattie, S. D. ;
Manolescu, D. M. ;
Blair, S. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) :A44-A47
[14]   Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes [J].
Benbow, E. M. ;
Kelly, S. P. ;
Zhao, L. ;
Reutenauer, J. W. ;
Suib, S. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (44) :22009-22017
[15]   Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries [J].
Beyer, H. ;
Meini, S. ;
Tsiouvaras, N. ;
Piana, M. ;
Gasteiger, H. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (26) :11025-11037
[16]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
[17]   The Role of Catalysts and Peroxide Oxidation in Lithium-Oxygen Batteries [J].
Black, Robert ;
Lee, Jin-Hyon ;
Adams, Brian ;
Mims, Charles A. ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :392-396
[18]   Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization [J].
Black, Robert ;
Oh, Si Hyoung ;
Lee, Jin-Hyon ;
Yim, Taeeun ;
Adams, Brian ;
Nazar, Linda F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :2902-2905
[19]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[20]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946