Error analysis for a second order scheme for the Navier-Stokes equations

被引:35
作者
Tone, F [1 ]
机构
[1] Indiana Univ, Inst Appl Math & Sci Comp, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; error analysis; Adams-Bashforth scheme; Crank-Nicholson scheme;
D O I
10.1016/j.apnum.2003.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we perform the error analysis for a space and time discretization scheme of the Navier-Stokes equations of viscous incompressible fluids. After presenting the appropriate framework for the spacial discretization of the equations, we consider a second order semi-implicit scheme for the time discretization, namely Crank-Nicholson for the linear term and Adams-Bashforth for the inertial term, and we study the error. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 119
页数:27
相关论文
共 50 条
[41]   Large order Reynolds expansions for the Navier-Stokes equations [J].
Morosi, Carlo ;
Pernici, Mario ;
Pizzocchero, Livio .
APPLIED MATHEMATICS LETTERS, 2015, 49 :58-66
[42]   Finite element error analysis of a variational multiscale method for the Navier-Stokes equations [J].
John V. ;
Kaya S. .
Advances in Computational Mathematics, 2008, 28 (1) :43-61
[43]   SPATIAL ERROR ESTIMATES FOR A FINITE ELEMENT VISCOSITY-SPLITTING SCHEME FOR THE NAVIER-STOKES EQUATIONS [J].
Guillen-Gonzalez, Francisco ;
Victoria Redondo-Neble, Maria .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (04) :826-844
[44]   AN EXACTLY COMPUTABLE LAGRANGE-GALERKIN SCHEME FOR THE NAVIER-STOKES EQUATIONS AND ITS ERROR ESTIMATES [J].
Tabata, Masahisa ;
Uchiumi, Shinya .
MATHEMATICS OF COMPUTATION, 2018, 87 (309) :39-67
[45]   Numerical analysis of the SAV scheme for the EMAC formulation of the time-dependent Navier-Stokes equations [J].
Han, Wei-Wei ;
Jiang, Yao-Lin ;
Miao, Zhen .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 438
[46]   Stokes and Navier-Stokes equations with Navier boundary conditions [J].
Acevedo Tapia, P. ;
Amrouche, C. ;
Conca, C. ;
Ghosh, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 :258-320
[47]   Numerical analysis of a linear second-order energy-stable auxiliary variable method for the incompressible Navier-Stokes equations [J].
Qi, Longzhao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 142
[48]   Optimal error estimates for the pseudostress formulation of the Navier-Stokes equations [J].
Kim, Dongho ;
Park, Eun-Jae ;
Seo, Boyoon .
APPLIED MATHEMATICS LETTERS, 2018, 78 :24-30
[49]   Stability Analysis for the Navier-Stokes Equations of Hydrodynamics [J].
Velez, J. A. ;
Uribe, F. J. ;
Velasco, R. M. ;
Garcia-Colin, L. S. .
RAREFIED GAS DYNAMICS, 2009, 1084 :111-116
[50]   Analysis of semidiscretization of the compressible Navier-Stokes equations [J].
Zatorska, Ewelina .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) :559-580