Error analysis for a second order scheme for the Navier-Stokes equations

被引:35
作者
Tone, F [1 ]
机构
[1] Indiana Univ, Inst Appl Math & Sci Comp, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; error analysis; Adams-Bashforth scheme; Crank-Nicholson scheme;
D O I
10.1016/j.apnum.2003.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we perform the error analysis for a space and time discretization scheme of the Navier-Stokes equations of viscous incompressible fluids. After presenting the appropriate framework for the spacial discretization of the equations, we consider a second order semi-implicit scheme for the time discretization, namely Crank-Nicholson for the linear term and Adams-Bashforth for the inertial term, and we study the error. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 119
页数:27
相关论文
共 50 条
[31]   A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations [J].
M. Ben-Artzi ;
J.-P. Croisille ;
D. Fishelov .
Journal of Scientific Computing, 2010, 42 :216-250
[32]   Higher-Order Compact Scheme for the Incompressible Navier-Stokes Equations in Spherical Geometry [J].
Sekhar, T. V. S. ;
Raju, B. Hema Sundar ;
Sanyasiraju, Y. V. S. S. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 11 (01) :99-113
[33]   H2-STABILITY OF SOME SECOND ORDER FULLY DISCRETE SCHEMES FOR THE NAVIER-STOKES EQUATIONS [J].
He, Yinnian ;
Huang, Pengzhan ;
Li, Jian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (06) :2745-2780
[34]   Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations [J].
Tröltzsch, F ;
Wachsmuth, D .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2006, 12 (01) :93-119
[35]   Second order time-space iterative method for the stationary Navier-Stokes equations [J].
Huang, Pengzhan ;
He, Yinnian ;
Feng, Xinlong .
APPLIED MATHEMATICS LETTERS, 2016, 59 :79-86
[36]   Navier-Stokes equations with first order boundary conditions [J].
Steiger, Olivier .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (04) :456-481
[37]   A splitting technique of higher order for the Navier-Stokes equations [J].
Frochte, Joerg ;
Heinrichs, Wilhelm .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) :373-390
[38]   Second-order invariant domain preserving approximation of the compressible Navier-Stokes equations [J].
Guermond, Jean-Luc ;
Maier, Matthias ;
Popav, Bojan ;
Tomas, Ignacio .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 375 (375)
[39]   SECOND-ORDER FULLY DISCRETIZED PROJECTION METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Guo, Daniel X. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, :9-20
[40]   Convergence of second-order in time numerical discretizations for the evolution Navier-Stokes equations [J].
Luigi C. Berselli ;
Stefano Spirito .
Advances in Continuous and Discrete Models, 2022