Error analysis for a second order scheme for the Navier-Stokes equations

被引:35
作者
Tone, F [1 ]
机构
[1] Indiana Univ, Inst Appl Math & Sci Comp, Bloomington, IN 47405 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; error analysis; Adams-Bashforth scheme; Crank-Nicholson scheme;
D O I
10.1016/j.apnum.2003.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we perform the error analysis for a space and time discretization scheme of the Navier-Stokes equations of viscous incompressible fluids. After presenting the appropriate framework for the spacial discretization of the equations, we consider a second order semi-implicit scheme for the time discretization, namely Crank-Nicholson for the linear term and Adams-Bashforth for the inertial term, and we study the error. (C) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 119
页数:27
相关论文
共 50 条
[21]   A posteriori error analysis and adaptivity for a VEM discretization of the Navier-Stokes equations [J].
Canuto, Claudio ;
Rosso, Davide .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (06)
[22]   A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem [J].
Hadji, M. L. ;
Assala, A. ;
Nouri, F. Z. .
CALCOLO, 2015, 52 (04) :559-576
[23]   Superconvergence analysis for the Navier-Stokes equations [J].
Wang, XS ;
Ye, X .
APPLIED NUMERICAL MATHEMATICS, 2002, 41 (04) :515-527
[24]   Error estimate for a two-level scheme of newton type for the Navier-Stokes equations [J].
Hou, YR ;
Li, KT .
CURRENT TRENDS IN SCIENTIFIC COMPUTING, 2003, 329 :183-190
[25]   A hybrid implicit scheme for solving Navier-Stokes equations [J].
Wang, Gang ;
Mian, Haris Hameed ;
Liu, Yi ;
Ye, Zhengyin .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 78 (06) :319-334
[27]   A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations [J].
Ben-Artzi, M. ;
Croisille, J. -P. ;
Fishelov, D. .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (02) :216-250
[28]   A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations [J].
M. Ben-Artzi ;
J.-P. Croisille ;
D. Fishelov .
Journal of Scientific Computing, 2010, 42 :216-250
[29]   Fourth-order finite difference scheme for the incompressible Navier-Stokes equations in a disk [J].
Lai, MC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (08) :909-922
[30]   A new fourth-order compact scheme for the Navier-Stokes equations in irregular domains [J].
Fishelov, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (01) :6-25