Naked physically synthesized gold nanoparticles affect migration, mitochondrial activity, and proliferation of vascular smooth muscle cells

被引:14
作者
Lo, Huey-Ming [1 ,2 ]
Ma, Ming-Chieh [1 ]
Shieh, Jiunn-Min [3 ,4 ]
Chen, Hui-Ling [5 ]
Wu, Wen-Bin [1 ]
机构
[1] Fu Jen Catholic Univ, Sch Med, 510 Zhongzheng Rd, New Taipei 24205, Taiwan
[2] Shin Kong Wu Ho Su Mem Hosp, Sect Cardiol, Dept Internal Med, Taipei, Taiwan
[3] Chi Mei Med Ctr, Dept Internal Med, Tainan, Taiwan
[4] Chia Nan Univ Pharm & Sci, Dept Recreat & Healthcare Management, Tainan, Taiwan
[5] Fu Jen Catholic Univ, Holist Educ Ctr, New Taipei, Taiwan
关键词
adhesion; AuNP; cardiovascular disease; FAK; platelet-derived growth factor; VSMC; TEM; GROWTH-FACTOR; BIOLOGY; PROTEIN; ACTIVATION; ATHEROSCLEROSIS; CYTOTOXICITY; INFLAMMATION; EXPRESSION; PATHWAYS; INSIGHTS;
D O I
10.2147/IJN.S156880
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Introduction: Vascular smooth muscle cells (VSMCs) play an important role in the development and progression of atherosclerosis and vascular injuries in terms of proliferation and migration. Therefore, the aim of this study was to investigate the anti-migratory and proliferative effects of naked gold nanoparticles (AuNPs) on VSMCs. Materials and methods: One set of physically synthesized AuNPs (pAuNPs) and three sets of chemically synthesized AuNPs (cAuNPs) were tested. Results and discussion: Among them, the pAuNPs were found to significantly and markedly inhibit platelet-derived growth factor (PDGF)-induced VSMC migration. Transmission electron microscopy revealed that the pAuNPs were ingested and aggregated in the cytoplasm at an early stage of treatment, while the viability of VSMCs was not affected within 24 hours of treatment. The pAuNP treatment enhanced cellular mitochondrial activity but inhibited basal and PDGF-induced VSMC proliferation, as determined by MTT, WST-1, and BrdU cell proliferation assays. Furthermore, the pAuNPs did not interfere with PDGF signaling or matrix metalloproteinase-2 expression/activity. Unlike the cAuNPs, the pAuNPs could markedly reduce VSMC adhesion to collagen, which was supported by the findings that the pAuNPs could inhibit collagen-induced tyrosine protein and focal adhesion kinase (FAK) phosphorylation and actin cytoskeleton reorganization during cell adhesion. The in vitro effects of the pAuNPs were confirmed in the in vivo rat balloon-injured carotid artery model by diminishing the proliferating VSMCs. Conclusion: Taken together, the present study provides the first evidence that naked pAuNPs can reduce VSMC migration and compromise cell adhesion by affecting FAK and tyrosine-protein activation. The pAuNPs also have an inhibitory effect on PDGF-induced VSMC proliferation and can reduce proliferating/migrating VSMC expression in vivo.
引用
收藏
页码:3163 / 3176
页数:14
相关论文
共 44 条
[41]   Identification of the Nanogold Particle-Induced Endoplasmic Reticulum Stress by Omic Techniques and Systems Biology Analysis [J].
Tsai, Yen-Yin ;
Huang, Yi-Huei ;
Chao, Ya-Li ;
Hu, Kuang-Yu ;
Chin, Li-Te ;
Chou, Shiu-Huey ;
Hour, Ai-Ling ;
Yao, Yeong-Der ;
Tu, Chi-Shun ;
Liang, Yao-Jen ;
Tsai, Cheng-Yuh ;
Wu, Hao-Yu ;
Tan, Shan-Wen ;
Chen, Han-Min .
ACS NANO, 2011, 5 (12) :9354-9369
[42]   Ginkgolide A-Gold Nanoparticles Inhibit Vascular Smooth Muscle Proliferation and Migration In Vitro and Reduce Neointimal Hyperplasia in a Mouse Model [J].
Weakley, Sarah M. ;
Wang, Xinwen ;
Mu, Hong ;
Lu, Jianming ;
Lin, Peter H. ;
Yao, Qizhi ;
Chen, Changyi .
JOURNAL OF SURGICAL RESEARCH, 2011, 171 (01) :31-39
[43]   Curcumin Nanoparticles Ameliorate ICAM-1 Expression in TNF-α-Treated Lung Epithelial Cells through p47 phox and MAPKs/AP-1 Pathways [J].
Yen, Feng-Lin ;
Tsai, Ming-Horng ;
Yang, Chuen-Mao ;
Liang, Chan-Jung ;
Lin, Chun-Ching ;
Chiang, Yao-Chang ;
Lee, Hui-Chun ;
Ko, Horng-Huey ;
Lee, Chiang-Wen .
PLOS ONE, 2013, 8 (05)
[44]   Cytotoxicity and Immunological Response of Gold and Silver Nanoparticles of Different Sizes [J].
Yen, Hung-Jen ;
Hsu, Shan-hui ;
Tsai, Ching-Lin .
SMALL, 2009, 5 (13) :1553-1561