A stochastic inequality for the largest order statistics from heterogeneous gamma variables

被引:15
作者
Zhao, Peng [1 ]
Balakrishnan, N. [2 ,3 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[3] King Abdulaziz Univ, Dept Stat, Jeddah 21413, Saudi Arabia
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Gamma distribution; Order statistics; Likelihood ratio order; Majorization; PARALLEL SYSTEMS; POPULATIONS;
D O I
10.1016/j.jmva.2014.04.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we compare the largest order statistics arising from independent heterogeneous gamma random variables based on the likelihood ratio order. Let X-1,...,X-n, be independent gamma random variables with X-i having shape parameter r is an element of (0, 1] and scale parameter lambda(i), i = 1,..., n, and let X-n:n, denote the corresponding largest order statistic. Let Y-n:n denote the largest order statistic arising from independent and identically distributed gamma random variables Y-1,...,Y-n, with Y-i having shape parameter r and scale parameter (lambda) over bar = Sigma(n)(i=1) lambda(i)/n, the arithmetic mean of lambda(i)'s. It is shown here that X-n:n is stochastically greater than Y-n:n in terms of the likelihood ratio order. The result established here answers an open problem posed by Balakrishnan and Zhao (2013), and strengthens and generalizes some of the results known in the literature. Numerical examples are also provided to illustrate the main result established here. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:145 / 150
页数:6
相关论文
共 30 条
[1]  
Balakrishnan N, 2007, REV MAT COMPLUT, V20, P7
[2]   ORDERING PROPERTIES OF ORDER STATISTICS FROM HETEROGENEOUS POPULATIONS: A REVIEW WITH AN EMPHASIS ON SOME RECENT DEVELOPMENTS [J].
Balakrishnan, N. ;
Zhao, Peng .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2013, 27 (04) :403-443
[3]   Hazard rate comparison of parallel systems with heterogeneous gamma components [J].
Balakrishnan, N. ;
Zhao, Peng .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 113 :153-160
[4]  
Balakrishnan N., 1998, HDB STAT, V16
[5]  
Balakrishnan N., 1998, HDB STAT, V17
[6]   APPLICATIONS OF THE HAZARD RATE ORDERING IN RELIABILITY AND ORDER-STATISTICS [J].
BOLAND, PJ ;
ELNEWEIHI, E ;
PROSCHAN, F .
JOURNAL OF APPLIED PROBABILITY, 1994, 31 (01) :180-192
[7]  
Bon J.L., 2006, ESAIM, V10, P1
[8]   Ordering properties of convolutions of exponential random variables [J].
Bon, JL ;
Paltanea, E .
LIFETIME DATA ANALYSIS, 1999, 5 (02) :185-192
[9]  
David H. A., 2003, ORDER STAT
[10]   Stochastic comparisons of parallel systems of heterogeneous exponential components [J].
Dykstra, R ;
Kochar, S ;
Rojo, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 65 (02) :203-211