New bounds for the minimum length of quaternary linear codes of dimension five

被引:4
作者
Boukliev, IG [1 ]
机构
[1] BULGARIAN ACAD SCI,MATH INST,VELIKO TARNOVO 5000,BULGARIA
关键词
D O I
10.1016/S0012-365X(96)00104-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n(4)(k,d) be the smallest integer n, such that a quaternary linear [n, k,d]-code exists. The bounds n(4)(5, 21)less than or equal to 32, n(4)(5, 30) = 43, n(4)(5, 32) = 46, n(4)(5, 36) = 51, n(4)(5, 40)less than or equal to 57, n(4)(5, 48)less than or equal to 67, n(4)(5, 64) = 88, n(4)(5, 68)less than or equal to 94, n(4)(5, 70)less than or equal to 97, n(4)(5, 92)less than or equal to 126, n(4)(5, 98)less than or equal to 135, n(4)(5, 122) = 165, n(4)(5, 132)less than or equal to 179, n(4)(5, 136)less than or equal to 184, n(4)(5, 140)=189, n(4)(5, 156)less than or equal to 211, n(4)(5, 162)= 219, n(4)(5, 164) less than or equal to 222, n(4)(5, 166)less than or equal to 225, n(4)(5, 173)less than or equal to 234, n(4)(5, 194) = 261, n(4)(5, 204) = 273, n(4)(5,208) = 279, n(4)(5,212) = 284, n(4)(5, 214) = 287,n(4)(5,216) = 290 and n(4)(5,220) = 295 are proved. A [q(4) + q(2) + 1, 5, q(4) - q(3) + q(2) - q]-code over GF(q) exists for every q.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 20 条
[1]  
BOUKLIEV I, IN PRESS IEEE T INFO
[2]  
BOUKLIEV I, 1995, P INT WORKSH OPT COD, P15
[3]  
BROUWER AE, IN PRESS DES CODES C
[4]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[5]   THE NONEXISTENCE OF SOME 5-DIMENSIONAL QUATERNARY LINEAR CODES [J].
DASKALOV, R ;
METODIEVA, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :581-583
[6]  
DASKALOV RN, 1994, MATH ED MATH, P143
[7]   OPTIMAL LINEAR CODES OVER GF(4) [J].
GREENOUGH, PP ;
HILL, R .
DISCRETE MATHEMATICS, 1994, 125 (1-3) :187-199
[8]  
GRIESMER IH, 1960, IBM J RES DEV, V4, P532
[9]   SOME BEST RATE 1/P AND RATE (P-1)/P SYSTEMATIC QUASI-CYCLIC CODES OVER GF(3) AND GF(4) [J].
GULLIVER, TA ;
BHARGAVA, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) :1369-1374
[10]  
GULLIVER TA, 1993, SCE9318 CARL U