Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments

被引:205
作者
Tian, Luyi [1 ,2 ]
Dong, Xueyi [1 ,3 ]
Freytag, Saskia [1 ,4 ]
Le Cao, Kim-Anh [5 ]
Su, Shian [1 ]
JalalAbadi, Abolfazl [5 ]
Amann-Zalcenstein, Daniela [1 ,2 ]
Weber, Tom S. [1 ,2 ]
Seidi, Azadeh [6 ]
Jabbari, Jafar S. [6 ]
Naik, Shalin H. [1 ,2 ]
Ritchie, Matthew E. [1 ,2 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Parkville, Vic, Australia
[2] Univ Melbourne, Dept Med Biol, Parkville, Vic, Australia
[3] Zhejiang Univ, Coll Life Sci, Hangzhou, Zhejiang, Peoples R China
[4] Harry Perkins Inst Med Res, Nedlands, WA, Australia
[5] Univ Melbourne, Sch Math & Stat, Melbourne Integrat Genom, Parkville, Vic, Australia
[6] Victorian Comprehens Canc Ctr, Australian Genome Res Facil, Melbourne, Vic, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
EXPRESSION; NORMALIZATION; NOISE; BIAS;
D O I
10.1038/s41592-019-0425-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single cell RNA-sequencing (scRNA-seq) technology has undergone rapid development in recent years, leading to an explosion in the number of tailored data analysis methods. However, the current lack of gold-standard benchmark datasets makes it difficult for researchers to systematically compare the performance of the many methods available. Here, we generated a realistic benchmark experiment that included single cells and admixtures of cells or RNA to create 'pseudo cells' from up to five distinct cancer cell lines. In total, 14 datasets were generated using both droplet and plate-based scRNA-seq protocols. We compared 3,913 combinations of data analysis methods for tasks ranging from normalization and imputation to clustering, trajectory analysis and data integration. Evaluation revealed pipelines suited to different types of data for different tasks. Our data and analysis provide a comprehensive framework for benchmarking most common scRNA-seq analysis steps.
引用
收藏
页码:479 / +
页数:12
相关论文
共 57 条
[1]  
Andrews Tallulah S, 2018, F1000Res, V7, P1740, DOI 10.12688/f1000research.16613.1
[2]  
[Anonymous], 2016, NUCL ACIDS RES, DOI DOI 10.1093/NAR/GKW430
[3]  
[Anonymous], PREPRINT
[4]  
[Anonymous], CLUSTEREXPERIMENT CO
[5]  
[Anonymous], PREPRINT
[6]   SCnorm: robust normalization of single-cell RNA-seq data [J].
Bacher, Rhonda ;
Chu, Li-Fang ;
Leng, Ning ;
Gasch, Audrey P. ;
Thomson, James A. ;
Stewart, Ron M. ;
Newton, Michael ;
Kendziorski, Christina .
NATURE METHODS, 2017, 14 (06) :584-+
[7]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
[8]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[9]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[10]   Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq [J].
Cole, Michael B. ;
Risso, Davide ;
Wagner, Allon ;
DeTomaso, David ;
Ngai, John ;
Purdom, Elizabeth ;
Dudoit, Sandrine ;
Yosef, Nir .
CELL SYSTEMS, 2019, 8 (04) :315-+