Three-particle integrable systems with elliptic dependence on momenta and theta function identities

被引:17
作者
Aminov, G. [1 ,2 ]
Mironov, A. [1 ,3 ]
Morozov, A. [1 ]
Zotov, A. [1 ,2 ,4 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[3] Lebedev Phys Inst, Theory Dept, Moscow, Russia
[4] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
关键词
CALOGERO-MOSER SYSTEMS; SUSY FIELD-THEORIES; YANG-MILLS; DUALITY; MONOPOLES; BRANES;
D O I
10.1016/j.physletb.2013.09.004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We claim that some non-trivial theta-function identities at higher genus can stand behind the Poisson commutativity of the Hamiltonians of elliptic integrable systems, which were introduced in [1,2] and are made from the theta-functions on Jacobians of the Seiberg-Witten curves. For the case of three-particle systems the genus-2 identities are found and presented in the Letter. The connection with the Macdonald identities is established. The genus-2 theta-function identities provide the direct way to construct the Poisson structure in terms of the coordinates on the Jacobian of the spectral curve and the elements of its period matrix. The Lax representations for the two-particle systems are also obtained. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:802 / 808
页数:7
相关论文
共 48 条
[1]  
Aminov G., ITEPTH2713
[2]   WDVV equations for 6d Seiberg-Witten theory and bi-elliptic curves [J].
Braden, H. W. ;
Marshakov, A. ;
Mironov, A. ;
Morozov, A. .
ACTA APPLICANDAE MATHEMATICAE, 2007, 99 (03) :223-244
[3]   On double-elliptic integrable systems 1. A duality argument for the case of SU(2) [J].
Braden, HW ;
Marshakov, A ;
Mironov, A ;
Morozov, A .
NUCLEAR PHYSICS B, 2000, 573 (1-2) :553-572
[4]   The Ruijs']jsenaars-Schneider model in the context of Seiberg-Witten theory [J].
Braden, HW ;
Marshakov, A ;
Mironov, A ;
Morozov, A .
NUCLEAR PHYSICS B, 1999, 558 (1-2) :371-390
[5]   Classical r-matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions [J].
Braden, HW ;
Dolgushev, VA ;
Olshanetsky, MA ;
Zotov, AV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25) :6979-7000
[6]   Double-elliptic dynamical systems from generalized Mukai-Sklyanin algebras [J].
Braden, HW ;
Gorsky, A ;
Odesskii, A ;
Rubtsov, V .
NUCLEAR PHYSICS B, 2002, 633 (03) :414-442
[7]   FUNCTIONAL-EQUATION CONNECTED WITH INTEGRABLE MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1976, 16 (03) :77-80
[8]   EXACTLY SOLVABLE ONE-DIMENSIONAL MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (11) :411-416
[9]   D-branes, monopoles and Nahm equations [J].
Diaconescu, DE .
NUCLEAR PHYSICS B, 1997, 503 (1-2) :220-238
[10]   Supersymmetric Yang-Mills theory and integrable systems [J].
Donagi, R ;
Witten, E .
NUCLEAR PHYSICS B, 1996, 460 (02) :299-334