General decay and blow up of solutions for a system of viscoelastic wave equations with nonlinear boundary source terms

被引:5
作者
Peyravi, Amir [1 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz 7146713565, Iran
关键词
Existence; Decay; Blow up; Nonlinear boundary conditions; GLOBAL EXISTENCE; ASYMPTOTIC STABILITY; VOLTERRA EQUATION; ENERGY;
D O I
10.1016/j.jmaa.2017.02.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, an initial boundary value problem for a system of viscoelastic wave equations with nonlinear boundary source term of the form (ui)tt - Delta(ui)(tt) + integral(t)(0) gi(t - s)Delta ui(s)ds - Delta(u(i))t = 0, in Omega x (0,T), ui(x, 0) = phi(i)(x), (u(i))t(x, 0) = psi(i)(x), in Omega, u(i) (x, t) = 0, on Gamma(0) x (0, T), partial derivative(v)(u(i))(tt) + partial derivative(v)u(i) -integral(t)(0) (t - s)partial derivative(v)u(i)(s)ds +partial derivative(v)(u(i))(t) + f(i)(u) = 0, on Gamma(1) x (0,T), where i = 1,..., l (1 >= 2) is considered in a bounded domain Omega in R-N (N >= 1). By the Faedo Galerkin approximation method we obtain existence and uniqueness of weak solutions. Under appropriate assumptions on initial data and the relaxation functions, we establish general decay and blow up results associated to solution energy. Estimates for lifespan of solutions are also given. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1056 / 1076
页数:21
相关论文
共 33 条
  • [1] Adams R., 2003, SOBOLEV SPACES
  • [2] [Anonymous], 1993, DIFFER INTEGR EQUATI
  • [3] Berrimi S., 2004, Electron. J. Differ. Equations, V2004, P1
  • [4] General decay rate estimates for viscoelastic dissipative systems
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Martinez, P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) : 177 - 193
  • [5] Cavalcanti M.M., 2001, Diff. Integ. Eqs, V14, P85
  • [6] Cavalcanti M. M., 2006, ADV MATH SCI APPL, V16, P661
  • [7] Cavalcanti M.M., 2016, Advances in Nonlinear Analysis
  • [8] Cavalcanti M. M., 2002, ELECTRON J DIFFER EQ, V2002, P1
  • [9] Existence and uniform decay for a non-linear viscoelastic equation with strong damping
    Cavalcanti, MM
    Cavalcanti, VND
    Ferreira, J
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) : 1043 - 1053
  • [10] DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297