Translation hypersurfaces whose curvature depends partially on its variables

被引:5
|
作者
Ruiz-Hernandez, Gabriel [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Unidad Juriquilla, Inst Matemat, Queretaro 76230, Mexico
关键词
Translation hypersurfaces; Mean curvature; Gauss-Kronecker curvature; Eikonal function;
D O I
10.1016/j.jmaa.2020.124913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate translation hypersurfaces in the (n+ 1)-dimensional Euclidean space whose Gauss-Kronecker curvature depends on either its first p or on its second q variables. These hypersurfaces are the graph of the sum of two functions in p and q independent variables respectively and with n = p + q. We prove that under this condition, the Gauss-Kronecker curvature is constant zero. On other side, if the mean curvature is nowhere zero and it depends on either its first p or on its second q variables, we get again that the Gauss-Kronecker curvature is constant zero. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 4 条
  • [1] On affine translation hypersurfaces of constant mean curvature
    Sun, HF
    Chen, C
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 381 - 390
  • [2] Translation Hypersurfaces with Constant Sr Curvature in the Euclidean Space
    Lima, Barnabe P.
    Santos, Newton L.
    Silva, Juscelino P.
    Sousa, Paulo A. A.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2016, 88 (04): : 2039 - 2052
  • [3] Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature
    Saglam, Derya
    Sunar, Cumali
    AIMS MATHEMATICS, 2023, 8 (02): : 5036 - 5048
  • [4] On Translation Hypersurfaces with Constant Mean Curvature in (n+1)-Dimensional Spaces
    陈春
    孙华飞
    汤莉
    Journal of Beijing Institute of Technology(English Edition), 2003, (03) : 322 - 325