Artificial intelligence in endoscopy-new ways to detect and characterize polyps

被引:0
作者
Allescher, H. - D. [1 ]
Mangold, M. [1 ]
Weingart, V. [1 ]
机构
[1] Klinikum Garmisch Partenkirchen, Zentrum Innere Med Gastroenterol Hepatol Stoffwec, Auenstr 6, D-82467 Garmisch Partenkirchen, Germany
来源
GASTROENTEROLOGE | 2021年 / 16卷 / 01期
关键词
Colorectal neoplasms; Adenoma; Colonoscopy; Preventive medicine; Machine learning; COMPUTER-AIDED DETECTION; COLORECTAL POLYPS; GASTROINTESTINAL ENDOSCOPY; DIAGNOSTIC SYSTEM; ADENOMA DETECTION; TIME; CLASSIFICATION; COLONOSCOPY; LESIONS; HISTOLOGY;
D O I
10.1007/s11377-020-00495-y
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Screening colonoscopy is the most effective strategy for prevention of colorectal cancer, but the efficacy is highly dependent on the quality of the endoscopic procedure. The most important determinant factor is the detection, characterization and removal of all polyps and premalignant adenomas. The rate of so-called interval carcinoma correlates directly with the percentage of missed adenomas during the screening procedure. Automated polyp detection algorithms can improve and optimize the detection and characterization of colorectal polyps. The possibilities of image analysis methods and structure analysis have improved enormously in recent years mainly by the use of artificial intelligence (AI) implementing convoluted neuronal network and big data analysis. The current developmental activities are directed, on the one hand, toward automated detection of polyps during live endoscopy and, on the other hand, to identify and characterize the type and histology of an identified polyp in the context of a computer-aided diagnosis (CAD). The current review provides a summary of the different approaches and software solutions which are currently available to improve screening colonoscopy.
引用
收藏
页码:3 / 16
页数:14
相关论文
共 38 条
[1]   Artificial intelligence in gastrointestinal endoscopy: The future is almost here [J].
Alagappan, Muthuraman ;
Brown, Jeremy R. Glissen ;
Mori, Yuichi ;
Berzin, Tyler M. .
WORLD JOURNAL OF GASTROINTESTINAL ENDOSCOPY, 2018, 10 (10) :239-249
[2]   Artificial intelligence for polyp detection during colonoscopy: a systematic review and meta-analysis [J].
Barua, Ishita ;
Vinsard, Daniela Guerrero ;
Jodal, Henriette C. ;
Loberg, Magnus ;
Kalager, Mette ;
Holme, Oyvind ;
Misawa, Masashi ;
Bretthauer, Michael ;
Mori, Yuichi .
ENDOSCOPY, 2021, 53 (03) :277-284
[3]   Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model [J].
Byrne, Michael F. ;
Chapados, Nicolas ;
Soudan, Florian ;
Oertel, Clemens ;
Linares Perez, Milagros ;
Kelly, Raymond ;
Iqbal, Nadeem ;
Chandelier, Florent ;
Rex, Douglas K. .
GUT, 2019, 68 (01) :94-100
[4]  
Corley DA, 2014, NEW ENGL J MED, V370, P2541, DOI [10.1056/NEJMc1405329, 10.1056/NEJMoa1309086]
[5]   Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps [J].
Fernandez-Esparrach, Gloria ;
Bernal, Jorge ;
Lopez-Ceron, Maria ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Rodriguez de Miguel, Cristina ;
Javier Sanchez, Francisco .
ENDOSCOPY, 2016, 48 (09) :837-842
[6]   Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging [J].
Fu, Jachih J. C. ;
Yu, Ya-Wen ;
Lin, Hong-Mau ;
Chai, Jyh-Wen ;
Chen, Clayton Chi-Chang .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2014, 38 (04) :267-275
[7]   Detection of colorectal adenomas with a real-time computer-aided system (ENDOANGEL): a randomised controlled study [J].
Gong, Dexin ;
Wu, Lianlian ;
Zhang, Jun ;
Mu, Ganggang ;
Shen, Lei ;
Liu, Jun ;
Wang, Zhengqiang ;
Zhou, Wei ;
An, Ping ;
Huang, Xu ;
Jiang, Xiaoda ;
Li, Yanxia ;
Wan, Xinyue ;
Hu, Shan ;
Chen, Yiyun ;
Hu, Xiao ;
Xu, Youming ;
Zhu, Xiaoyun ;
Li, Suqin ;
Yao, Liwen ;
He, Xinqi ;
Chen, Di ;
Huang, Li ;
Wei, Xiao ;
Wang, Xuemei ;
Yu, Honggang .
LANCET GASTROENTEROLOGY & HEPATOLOGY, 2020, 5 (04) :352-361
[8]   Computer-based classification of small colorectal polyps by using narrow-band imaging with optical magnification [J].
Gross, Sebastian ;
Trautwein, Christian ;
Behrens, Alexander ;
Winograd, Ron ;
Palm, Stephan ;
Lutz, Holger H. ;
Schirin-Sokhan, Ramin ;
Hecker, Hartmut ;
Aach, Til ;
Tischendorf, Jens J. W. .
GASTROINTESTINAL ENDOSCOPY, 2011, 74 (06) :1354-1359
[9]   Artificial intelligence in luminal endoscopy [J].
Gulati, Shraddha ;
Emmanuel, Andrew ;
Patel, Mehul ;
Williams, Sophie ;
Haji, Amyn ;
Hayee, Bu'Hussain ;
Neumann, Helmut .
THERAPEUTIC ADVANCES IN GASTROINTESTINAL ENDOSCOPY, 2020, 13
[10]   The future of endoscopy: Advances in endoscopic image innovations [J].
Gulati, Shraddha ;
Patel, Mehul ;
Emmanuel, Andrew ;
Haji, Amyn ;
Hayee, Bu'Hussain ;
Neumann, Helmut .
DIGESTIVE ENDOSCOPY, 2020, 32 (04) :512-522