Determination of the characteristic magnetic pre-sheath length at divertor surfaces using micro-engineered targets on DiMES at DIII-D

被引:7
作者
Abe, S. [1 ]
Skinner, C. H. [2 ]
Bykov, I [3 ]
Yeh, Y. W. [4 ]
Lasa, A. [5 ]
Coburn, J. [6 ]
Rudakov, D. L. [7 ]
Lasnier, C. J. [8 ]
Wang, H. Q. [3 ]
McLean, A. G. [8 ]
Abrams, T. [3 ]
Koel, B. E. [1 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08540 USA
[2] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[3] Gen Atom, San Diego, CA 92186 USA
[4] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[5] Univ Tennessee, Knoxville, TN 37996 USA
[6] ITER Org, Route Vinon Sur Verdon,CS 90 046, Paul Lez Durance, France
[7] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[8] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
divertor; sheath; ion angle distribution; Chodura sheath; erosion; plasma-material interaction; surface analysis; PLASMA-WALL TRANSITION;
D O I
10.1088/1741-4326/ac3cdb
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The magnetic pre-sheath (MPS) length, L (MPS), is a critical parameter to define the sheath potential, which controls the ion trajectory of low-Z species (D, T, He, and C), as well as the prompt re-deposition of high-Z species. To determine L (MPS), we fabricated micro-trenches (30 x 30 x 4 mu m) via focused ion beam milling on a silicon surface and exposed them to L-mode deuterium plasmas in DIII-D via the divertor material evaluation system (DiMES) removable sample exposure probe. The areal distribution of impurity depositions, mainly consisting of carbon, was measured by energy-dispersive x-ray spectroscopy (EDS) to reveal the deuterium ion shadowing effect on the trench floors. The carbon deposition profiles showed that the erosion was maximized for the azimuthal direction of phi = -40 degrees (referenced to the toroidal magnetic field direction) as well as the polar angle of theta = 80 degrees. A Monte Carlo equation-of-motion (EOM) model, based on a collisionless MPS, was used to calculate the azimuthal and polar deuterium ion angle distributions (IADs) at the surface for a range of L (MPS) = k x rho (i), where rho (i) is the ion gyro radius and k = 0.5-4. Then, gross erosion profiles were calculated by a Monte Carlo micro-patterning and roughness (MPR) code for ion sputtering using as input the calculated azimuthal and polar IADs for each value of k. Good agreement with the experimental C deposition profiles was obtained for the case k = 2.5-3.5. This result is consistent with a previous kinetic modeling prediction of k similar to 3, as well as previous analytical investigations that predicted the L (MPS) to be several ion gyro radii. A validation of theoretical sheath models supports its applicability to ITER and pilot plant divertors to successfully predict plasma-materials interactions.
引用
收藏
页数:9
相关论文
共 39 条
  • [1] Micro-trench measurements of the net deposition of carbon impurity ions in the DIII-D divertor and the resulting suppression of surface erosion
    Abe, S.
    Skinner, C. H.
    Bykov, I
    Guterl, J.
    Lasa, A.
    Yeh, Y. W.
    Coburn, J.
    Rudakov, D. L.
    Lasnier, C. J.
    Wang, H. Q.
    McLean, A. G.
    Abrams, T.
    Koel, B. E.
    [J]. PHYSICA SCRIPTA, 2021, 96 (12)
  • [2] Experimental verification of ion impact angle distribution at divertor surfaces using micro-engineered targets on DiMES at DIII-D
    Abe, S.
    Skinner, C. H.
    Bykov, I
    Yeh, Y. W.
    Lasa, A.
    Coburn, J.
    Rudakov, D. L.
    Lasnier, C. J.
    Wang, H. Q.
    McLean, A. G.
    Abrams, T.
    Koel, B. E.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2021, 27
  • [3] Allain J. P., 2018, PLASMA SCI TECHNOL, DOI [10.5772/intechopen.77157, DOI 10.5772/INTECHOPEN.77157]
  • [4] Behrisch R., 2007, SPUTTERING PARTICLE, Vvol 110, DOI [10.1007/978-3-540-44502-9, DOI 10.1007/978-3-540-44502-9]
  • [5] Sheath and presheath structure in the plasma-wall transition layer in an oblique magnetic field
    Beilis, II
    Keidar, M
    [J]. PHYSICS OF PLASMAS, 1998, 5 (05) : 1545 - 1553
  • [6] An Analytical Expression for the Electric Field and Particle Tracing in Modelling of Be Erosion Experiments at the JET ITER-like Wall
    Borodkina, I.
    Borodin, D.
    Kirschner, A.
    Tsvetkov, I. V.
    Kurnaev, V. A.
    Komm, M.
    Dejarnac, R.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    Avotina, L.
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (6-8) : 640 - 645
  • [7] Application of Analytical Model of the Electric Potential Distribution for Calculation of Charged Particle Dynamics in a Near-Wall Layer and Sputtering of the Plasma Facing Surfaces
    Borodkina, I. E.
    Komm, M.
    Tsvetkov, I. V.
    [J]. RUSSIAN PHYSICS JOURNAL, 2015, 58 (04) : 438 - 445
  • [8] Modeling of sputtering erosion/redeposition - status and implications for fusion design
    Brooks, JN
    [J]. FUSION ENGINEERING AND DESIGN, 2002, 60 (04) : 515 - 526
  • [9] Bykov I., 2021, COMMUNICATION
  • [10] Monte Carlo simulations of tungsten redeposition at the divertor target
    Chankin, A. V.
    Coster, D. P.
    Dux, R.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (02)