A Finite-Difference Scheme on a Graded Mesh for Solving Cauchy Problems with a Fractional Caputo Derivative in a Banach Space

被引:0
作者
Kokurin, M. M. [1 ]
Piskarev, S. I. [1 ,2 ]
机构
[1] Mari State Univ, Yoshkar Ola 424001, Russia
[2] Lomonosov Moscow State Univ, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Cauchy problem; Caputo derivative; Banach space; finite-difference scheme; stability; accuracy estimate; graded mesh; full discretization; INTEGRAL-EQUATIONS; ERROR ANALYSIS; DIFFUSION;
D O I
10.3103/S1066369X22110044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
study a well-posed Cauchy problem with a fractional Caputo derivative of the order in a Banach space. We construct and explore a finite-difference scheme on a graded mesh a ? (0,1) for solving such problems. The stability and accuracy estimates for a proposed finite-difference scheme are obtained.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 50 条
  • [31] Finite difference scheme for a non-linear subdiffusion problem with a fractional derivative along the trajectory of motion
    Lapin, Alexander V. V.
    Shaydurov, Vladimir V. V.
    Yanbarisov, Ruslan M. M.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2023, 38 (01) : 23 - 35
  • [32] The finite difference method for Caputo-type parabolic equation with fractional Laplacian: more than one space dimension
    Hu, Ye
    Li, Changpin
    Li, Hefeng
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) : 1114 - 1130
  • [33] Crank-Nicolson Finite Difference Scheme for Time-Space Fractional Diffusion Equation
    Takale, Kalyanrao C.
    Sangvikar , Veena V.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 701 - 710
  • [34] A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale
    Dai, WH
    Nassar, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) : 431 - 441
  • [35] Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Al Qurashi, Maysaa Mohamed
    Tang, Yifa
    Zhao, Yue
    ENTROPY, 2018, 20 (05)
  • [36] A numerical study on solving a fractional time-space diffusion equation via the finite difference method
    Zakaria, Mouhssine
    Moujahid, Abdelaziz
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 771 - 788
  • [37] A high-order compact difference scheme on graded mesh for time-fractional Burgers' equation
    Wang, Haifeng
    Sun, Yabing
    Qian, Xu
    Song, Songhe
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01)
  • [38] A numerical study on solving a fractional time-space diffusion equation via the finite difference method
    Mouhssine Zakaria
    Abdelaziz Moujahid
    Journal of Applied Mathematics and Computing, 2024, 70 : 771 - 788
  • [39] A fast finite difference scheme for the time-space fractional diffusion equation
    Wang, Y.
    Cai, M.
    IFAC PAPERSONLINE, 2024, 58 (12): : 174 - 178
  • [40] A high-order compact difference scheme on graded mesh for time-fractional Burgers’ equation
    Haifeng Wang
    Yabing Sun
    Xu Qian
    Songhe Song
    Computational and Applied Mathematics, 2023, 42